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 Image classification is a subject of pattern recognition that can be applied in several 
areas. Obtaining highly-accurate classification involves choosing optimal set-ups from 
which images will be classified. In this process, controllable variables can affect the 
overall classification accuracy, such as the image’s spatial resolution and the classification 
method. In this sense, we have designed a factorial experiment where the classification 
accuracy of an image (from Curitiba, Paraná, Brazil) was obtained from three satellites 
and three classification methods. The Kruskal-Wallis test was applied to evaluate if the 
variability across factor levels supports the hypothesis that the experimental factors’ 
effects are statistically significant. Then, we evaluated which factor levels differed from 
each other using post-hoc tests. Our findings suggest that the image’s spatial resolution 
and the interaction between Satellite and Classification Method are determinants in 
obtaining accurate image classifications in a geographical context. 
 
KEYWORDS: Factorial design, image classification, Kruskal-Wallis test, overall 
classification accuracy, spatial resolution. 
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INTRODUCTION 

Anthropogenic actions may cause the most diverse effects on the 
environment, requiring monitoring to mitigate the impacts. Monitoring land use 
becomes essential, as the activity carried out can generate impacts such as 
deforestation, in addition to causing physical and chemical changes in the soil 
(Araújo et al., 2004) and also in the water. The primary way to perform this 
monitoring of land use is through remote sensing (Vasconcelos and Novo, 2004). 
Compared with traditional monitoring techniques, remote sensing has advantages 
as it requires less time and costs to apply (Abdelmalik, 2018), especially when the 
area of interest is extensive. Several space missions provide us with Earth 
observation orbital data, such as Landsat, Cbers, Sentinel, Planet, and RapidEye, 
which, when combined with the correct geoprocessing techniques, provide us with 
reliable results in the most diverse applications. 

An important method for monitoring land use is image classification, which 
evaluates each pixel and classifies it based on previously established parameters. 
Some factors can interfere with the classifier’s performance, such as the spatial 
resolution of the image, the classification technique, and the number of samples 
per class. To perform image classification, we can use traditional remote sensing 
techniques, such as Pereira and Guimarães (2018) who used Minimum Distance 
(MD), Maximum Likelihood (ML), and Spectral Angle Mapping (SAM) methods to 
map the land use and occupation, concluding that the methods present an 
excellent performance providing reliable results. 

There is also the possibility of using machine learning techniques, which 
present accurate results like traditional techniques. Tian et al. (2016) applied the 
Random Forest method for identifying wetlands in arid regions of China, while Noi 
and Kappas (2018) applied the Random Forest k-Nearest Neighbors and Support 
Vector Machine methods in the process of classifying land use and occupation 
ground. 

This work aims to analyze data of a factorial experiment, which was conducted 
to identify which factors significantly influence the image classification process, 
considering the spatial resolution of the image and classification methods as the 
qualitative variables to be investigated. We chose the MD, ML, and SAM methods 
because they are traditional remote sensing techniques and provide equally 
accurate results compared to more complex techniques. 

This paper is organized as follows. Section 2 illustrates the study area, 
presents the image classification techniques, and describes the adopted statistical 
methods for the collected data analysis. In Section 3, we present and discuss the 
obtained results. General comments and concluding remarks are addressed in 
Section 4. 

MATERIAL AND METHODS 

Study Area 
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We have selected the city of Curitiba (capital of Paraná state, Brazil) as the 
study area for this work. The images were cut out (Figure 1), so working with the 
same area in each classification was possible. 

Figure 1 - Geographical representation of the study area.

 

Source: The Autors 

 

To evaluate controllable factors’ influence (and their interactions) in the 
classification process, we have considered the two variables: spatial resolution of 
images and classification method, both segmented by the number of samples per 
class. Three orbital images of the study area were selected (from the same period): 
Landsat 8, Cbers-4, and Sentinel- 2, which were made available free of charge by 
the United States Geological Survey (USGS), Instituto Nacional de Pesquisas 
Espaciais (INPE), and planet.com, respectively. Each image has a different spatial 
resolution:  30m for Landsat 8, 20m for Cbers-4, and 10m for Sentinel-2. 

The Semi-Automatic Classification Plugin (SCP), available in the open-source 
QGIS software, was used to perform the classification. The SCP calculates the 
spectral signature of the classes based on the samples of each class (Congedo, 
2016), performing the classification for the entire area. We have applied the MD, 
ML, and SAM classification methods. Each method is briefly explained in the 
following, as defined by Congedo (2016), adapted from Richards (2013). 

 

Minimum Distance 

The MD method is based on the Euclidean distance between spectral 
signatures, that is 
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where x and y are the spectral signature vectors of an image pixel and a training 
area, respectively. Besides, n denotes the number of image bands. In this method, 
each pixel in the image is associated with the closest spectral signature according 
to the discriminant function 

 

where Ck (k = 1, 2, 3) is the k-th land cover class and yk is the associated spectral 
signature vector. 

 

Maximum Likelihood 

The ML method is based on the Bayes’ Theorem, which approximates the 
classes’ probability distribution and then estimates which class each pixel belongs 
to. The Multivariate Normal distribution is typically adopted in this context 
(Richards, 2013). For this method, a sufficient number of pixels in each training 
sample is required so that it is possible to estimate the data covariance matrix.  
Following the Multivariate Normal distribution,  the pixel vector’s density is given 
by 

 

where p(Ck) is the probability that the correct class is Ck and Σk is the data 
covariance matrix in class Ck. For this method, the discriminant function is given by 

 

The ML method is one of the most used methods in supervised classifications 
(Congedo, 2016), even presenting a slower processing time than the MD method 
in most cases. 

 

Spectral Angle Mapping 

Finally, we have the SAM method, widely used for evaluating hyperspectral 
data. This method determines the spectral similarity between two spectra 
(signatures images and pixel training samples) by calculating their angle. Kruse et 
al. (1993) define the spectral angle as 

 

In this method, we classify the pixels as belonging to the class having the 
lowest angle, that is 
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Data 

The working dataset was built by matching the  Satellite and Method  levels 
for each number of samples per class, which yielded 27 classifications. The classes 
adopted in the classification process were: water bodies, vegetations, and 
urbanized areas. The adopted number of samples per class was 1, 5, and 10, being 
the greater the number of samples, the greater the number of pixels selected as 
training for the classifier.  The Overall Classification Accuracy (OCA) for each factor 
level and replicated (samples) combination is presented in Table 1. The variable 
Satellite was codified as 1 for Landsat 8, 2 for Cbers-4, and 3 for Sentinel-2. As for 
the variable Methods, the adopted codes were 1 for MD, 2 for ML, and 3 for SAM. 

 

Table 1 - Overall classification accuracy for each factor level and replicated combination 

 

Source: The Authors 

 

Statistical  Methodology 

We characterize the experimental outcome of interest (OCA) as a continuous 
random variable measured under conditions defined by factors (categorical 
variables with nominal levels).  In this context,  our primary hypothesis is that OCA 
values behave differently across Satellite/Method factors’ levels and interactions 
between them.  For instance, from Table 1, one may suggest that OCA varies 
substantially across satellites and that the SAM method provides low average 
accuracy. 

Figure 2 depicts the OCA average values within Satellite/Method factors 
levels. The red lines correspond to the 95% confidence intervals for the grouped 
mean estimators. Noticeably, Satellite Cbers-4 provides higher classification 
accuracy, mainly when MD and ML methods are  used.  Besides,  the  rightest  panel  
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also  indicates  that  the  OCA varies significantly on the interactions between 
Satellite and Method levels. These sample results suggest that further investigation 
should be conducted to evaluate whether the factors’ effect is statistically 
significant for explaining the variability of the response variable. 

 

Figure 2 - Grouped means of the overall classification accuracy. 

 

 

 

Source: The Autors 

 

The standard statistical approach to analyzing data from experimental designs 
is the parametric analysis of variance (ANOVA), from which one can investigate the 
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influence of factors on the average values of the response variable by comparing 
means across different groups (Montgomery, 2017). In our case, the developed 
experiment consists of a factorial design whose data can be described by the linear 
regression model 

 

with 

 

where µ is the overall mean effect, βi (i = 1, 2, 3) is the effect of the i-th Satellite, γj 
(j = 1, 2, 3) is the effect of the j-th  Method,  (βγ)ij  is  the  effect  of  the  interaction  
between  the  i-th  Satellite  and  the  j-th  Method,  and  ϵijk  is  the random error. 
In this formulation, the observed responses are taken at each level of factors 
Satellite and Method in each one of the k replicates (k = 1, 2, 3) from samples per 
class. 

Both factors (Satellite and Method) are of equal interest in our two-factor 
experiment.  Specifically, using the ANOVA framework through the means model 
(2.1), we are interested in testing hypotheses about the effect of Satellites and 
Methods levels and the effect of the interactions between them. Formally, we 
want to test 

 

Applying the parametric ANOVA with fixed-effects requires careful checking 
for some assumptions, which rely on the distributional behavior of the errors: they 
should be independent and normally distributed with zero mean and constant 
variance (homoscedastic) among the groups.   In this sense, researchers must 
adopt standard proce- dures for model-fit evaluation, which are typically based on 
finding specific patterns using graphical tools (scatter plots, histograms, Normal 
probability plots), beyond performing formal hypothesis tests for normality 
(Shapiro-Wilk, Kolmogorov-Smirnov) and heteroscedasticity (Bartlett, Levene) of 
the estimated residuals. 

One should be aware that violating the ANOVA assumptions could lead to 
misleading model-based inferences. In this case, researchers often resort to the 
Kruskal-Wallis (KW) Rank Sum test, widely known as the nonparametric one-way 
ANOVA. The KW test extends the Wilcoxon Rank Sum test to three or more 
independent samples, and it has more statistical power than the parametric one-
way ANOVA in case of nonnormality of the residuals. 

The KW test can be introduced in the context where independent random 
samples are taken from k populations, and the interest is to test whether the 
populations’ medians are statistically different.  Let δi  be the median of the i-th 
population (i = 1, . . . , k). Thus, one can test the equality of the medians by testing 
the hypothesis 

 

which is equivalent to test δ1 = δ2 = · · · = δk = a, with a ≠ 0.  In our experiment, we 
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have to individually compare k = 3 medians of every single factor and k = 9 medians 
from interactions between factors’ levels. The formal procedure to perform a KW 
test is well-described in Ramachandran and Tsokos (2018). 

RESULTS AND DISCUSSION 

This subsection is dedicated to presenting and discussing the main results 
obtained after analyzing the data described in Subsection 2.2. All computations 
were performed using the R environment (R Development Core Team, 2020), and 
we have adopted a significance level of 5% to draw conclusions. Our first attempt 
was based on fitting the linear regression model (2.1) and then decomposing the 
variance of the response variable using the parametric ANOVA methodology. The 
obtained results are presented in Table 2. 

 

Table 2 - Parametric analysis of variance for the overall classification accuracy. 

 

Source: The Autors 

 

These results allow us to conclude that the main effects of Satellite and 
Method are highly significant (p-values < 0.001). Notably,  the same conclusion 
holds for the interaction between Satellites and Methods.  In the following, one 
should check whether the fitted model met the assumptions of the parametric 
ANOVA, so the obtained results can be considered statistically valid. Figure 3 
illustrates the behavior of the estimated standardized residuals across 
observations (left panel) and fitted values (right panel). These scatter plots suggest 
that the errors may not be homoscedastic on the levels of at least one of the 
factors, which was confirmed by Levene’s test of equality of residual variances 
across Methods levels (p-value ≈ 0.0033). 

 

Figure 3 - Scatter plots of the standardized residuals. 
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Souce: The Authors 

 

Figure 4 depicts additional evidence that the obtained fit is not appropriate. 
The normality assumption for the residuals can be easily refuted by the behavior 
of its frequency distribution (left panel) and by the Shapiro-Wilk normality test (p-
value ≈ 0.0011). Besides, the Half-Normal probability plot indicates a poor fit since 
most of the estimated standardized residuals are lying outside the simulated 
envelope (right panel). 

Figure 4 - Frequency distribution and Half-Normal plot with simulated envelope for the 
standardized residuals 

 

Source: The Authors 
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After model-fit checking, we conclude that our inferences cannot be derived 
from the parametric ANOVA. In this sense, we flexible the distributional 
assumptions to use a more appropriate statistical methodology: the KW test. As 
described in Subsection 2.3, this test is based on evaluating whether group 
medians (of a single factor) are significantly different. Therefore, we present in 
Table 3 the KW Statistic values and the respective p-values, assuming that, under 
H0, these values are drawn from a Chi-squared distribution with k − 1 degrees of 
freedom. 

 

Table 3 - Kruskal-Wallis tests for the overall classification accuracy 

 

Source: The Authors 

 

The KW test results illustrate the importance of checking  the  parametric  
ANOVA  assumptions.  The  factor Method was first assumed to have a significant 
effect on the OCA but not significant when a more suitable methodology was 
applied. However, the effect of Satellites remains highly significant, which 
reassures the same conclusion for the interaction between the main factors 
considered in our experiment. 

 

Table 4 - Exact p-values of post-hoc tests for pairwise (Satellite-Method) comparisons. 

 

Source: The Authors 

 

After identifying significant factors (and interactions) using a KW test 
procedure, one may be interested in performing post-hoc tests for pairwise 
comparisons to evaluate which factors levels combinations are statistically 
different from each other. For this purpose, we have adopted the distribution-free 
Nemenyi’s rank comparison test (Nemenyi, 1963; Sachs, 1997) using the 
kwAllPairsNemenyiTest function from the PMCMRplus package. We have found 
Satel- lite Landsat 8 statistically different from the others (p-values < 0.005), and 
no differences were identified between Satellites Cbers-4 and Sentinel-2. The 
results regarding comparisons across interactions between Satellites and Meth- 
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ods are presented in Table 4. One can notice that classifications using the spatial 
resolutions provided by Landsat 8 and Cbers-4 are substantially different among 
MD and ML methods. 

CONCLUDING REMARKS 

Beyond using an extensive database on the availability of accurate orbital 
images and applying traditional or more complex techniques, geomatics 
researchers typically resort to image classification tools for monitoring land use 
and occupation. An accurate classification result strongly depends on the initial 
configuration of the adopted platform. In this sense, this work proposed to 
evaluate the interaction of two qualitative variables (spatial resolution of the 
image and classification method) in the image classification process, aiming to 
understand the influence of those variables (and their interactions). For that, we 
have performed a factorial experiment combining images of different spatial 
resolutions (Landsat 8: 30m, Cbers-4: 20m, and Sentinel-2: 10m) with different 
classification techniques (Minimum Distance, Maximum Likelihood, and Spectral 
Angle Mapping). After data collection, we assessed that the classical parametric 
ANOVA assumptions were not met, which led us to apply the Kruskal-Wallis test to 
derive our inferences and draw appropriate conclusions. The obtained results 
highlighted the importance of using a statistical method that flexible general 
parametric assumptions on our data as we may overestimate the effect of a 
specific factor on the overall classification accuracy. Finally, the main conclusions 
of the present study are that although the spatial resolution has slightly higher 
importance, both investigated variables are equally crucial to obtaining a reliable 
and accurate result in the image classification. 
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Identificando fatores que afetam a 
precisão geral em problemas de 
classificação de imagens: uma abordagem 
estatística 

RESUMO 

A classificação de imagens é um assunto de reconhecimento de padrões que pode ser 
aplicado em diversas áreas. A obtenção de uma classificação altamente precisa envolve 
a escolha de configurações ideais a partir das quais as imagens serão classificadas. Nesse 
processo, variáveis controláveis podem afetar a precisão geral da classificação, como a 
resolução espacial da imagem e o método de classificação. Nesse sentido, delineamos 
um experimento fatorial onde a precisão da classificação de uma imagem (de Curitiba, 
Paraná, Brasil) foi obtida a partir de três satélites e três métodos de classificação. O teste 
de Kruskal-Wallis foi aplicado para avaliar se a variabilidade entre os níveis dos fatores 
sustenta a hipótese de que os efeitos dos fatores experimentais são estatisticamente 
significativos. Em seguida, avaliamos quais níveis dos fatores diferiam entre si, usando 
testes post-hoc. Nossos resultados sugerem que a resolução espacial da imagem, que 
varia entre os satélites escolhidos para o estudo, e o método de classificação são 
determinantes na obtenção de classificações precisas de imagens em um contexto 
geográfico. 

 
PALAVRAS-CHAVE: Delineamento fatorial, classificação de imagens, teste de Kruskal-
Wallis, precisão geral da classificação, resolução espacial. 
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