DESENVOLVIMENTO DE MATERIAL DE CONSTRUÇÃO REFORÇADO COM FIBRAS DO REJEITO DO COURO

Teófilo Fonseca Belém Jr. *
Frieda Saicla Barros **

ABSTRACT

This article was elaborated with the finality of showing information about the development of a construction material reinforced with fiber made of remains of leather "COUROCRETE".

RESUMO

Este trabalho tem o objetivo de avaliar a possibilidade de execução de um novo material de construção reforçado com rejeitos de couro — raspa de couro —, bem como as suas características e adaptação ao mercado da Construção Civil.

Tendo em vista esta finalidade, foram realizadas pesquisas sobre o material a ser utilizado como reforço, aquisição dos rejeitos em empresas locais e ensaios em compósitos de argamassa de cimento e couro.

Foram executados ensaios de resistência à compressão, à flexão e ao impacto em corpos de prova de argamassa simples e reforçadas com o rejeito.

Através da análise dos resultados, obteve-se uma resposta em relação ao aproveitamento de fibras oriundas de animais na mistura com argamassa de cimento para a produção de materiais de construção, no caso específico, um componente de habitação fabricado com o material em questão, que seria utilizado como placa de forro.

INTRODUÇÃO

Este artigo foi elaborado com a finalidade de expor informações sobre o desenvolvimento de um material de construção reforçado com fibras do rejeito do couro "COUROCRETE".

A tecnologia dos materiais reforçados com fibras pode ser observada desde a antigüidade, quando a palha era usada para fazer tijolos.

O uso de argamassas e concretos reforçados com fibras possibilitam a produção de produtos com dimensões reduzidas, com acréscimo nas resistências à flexão e ao impacto, ganhos em termos de utilidade pós-fissuração e controle do processo de fissuração.

Tem crescido o interesse sobre a utilização de fibras alternativas às de aço e de vidro, com o objetivo de fabricar materiais de construção de baixo custo.

Fatores econômicos têm levado os pessodadores de países em desenvolvimento a estudar uma tecnologia apropriada à produção de materiais com fibras alternativas, com boa qualidade, eficientes e econômicos para o uso em HABITAÇÕES.

As fibras alternativas mais pesquisadas são as vegetais por constituírem um recurso renovável, abundante e relativamente barato, dentre as quais pode-se citar: coco juta, sisal, capim elefante, musamba, fibras de celulose, rami, bambu, piaçava, etc... Realizado este trabalho, pelos autores dentro do programa de estágios do CEFET-PR, é integrante de um estudo sobre o desenvolvimento de material de construção reforçado com fibras alternativas de origem animal, oriundas do rejeito da industrialização do couro.

Além de fatores econômicos e sociais, que levaram a sua utilização como reforço, tem-se o fator ecológico, pois esses rejeitos são enterrados ou queimados causando inconvenientes à indústria e ao meio ambiente.

O COURO

O couro constitui a pele do animal, preservada da putrefação por processos denominados de curtimento e que a tornam flexível e macia.

No curtimento é mantida a natureza fibrosa da pele; porém as fibras são, previamente, separadas pela remoção do tecido interfibrilar e pela ação de produtos químicos.

A parte da pele mais importante é a derme, pelo fato de ser a camada que será transformada em couro.

A derme é constituída por feixes de fibras colágenas, que se dispõem em todos os sentidos e direções, quando a pele se encontra recobrindo o animal; estes feixes de fibras estão envolvidos por um material interfibrilar constituído de proteínas globulares.

Após a retirada da pele do animal (estola), o material interfibrilar endurece, cimentando todos os feixes de fibras entre si.

O que interessa diretamente são os tecidos fibrosos (colágenos) e não a substância de cimentação.

A função das operações que antecedem o curtimento propriamente dito, é justamente remover, além da carne, epiderme e materiais acessórios, todo este material de cimentação constituído por proteínas degradadas.

Ao atingir a fase da operação de curtimento, tem-se apenas os feixes de fibras que constituem uma textura verdadeiramente maravilhosa.

MATERIAIS REFORÇADOS COM FIBRAS

A utilização adequada de fibras, em peças de argamassa de cimento, modifica as características desse material frágil e, de acordo com o tipo, dimensões e volume, pelas proporções dos elementos da peça e método de fabricação, pode-se promover:

— acréscimo na resistência à tração e flexão;
— acréscimo na resistência ao impacto;
— controle da fissuração e mudanças de comportamento na ruptura, conferindo capacidade de carga após a fissuração da peça;
— mudança das características reológicas da mistura fresca.

Para que as cargas de ruptura à tração de corpos de prova de fibro-cimento sejam maiores que a carga de fissuração de peça, o volume de fibras usado deve exceder a um determinado valor crítico. Este é definido como o volume de fibras para o qual a carga é mantida, no compósito, após a fissuração da peça.

Por outro lado, a capacidade de reforço da peça cresce linearmente com o volume de fibras usado até atingir um valor limite. Este é determinado pela quantidade de fibras que pode ser adicionada de modo a ficar com dispersão uniforme e envolvida pela argamassa. O volume-limite varia com o comprimento, espessura e tipo de fibra, além do método de fabricação empregado.

Estas conclusões são válidas também para corpos de prova de fibro-gesso.

JUSTIFICATIVA

O custo dos materiais de construção tradicionais é alto para poderem ser utilizados por parcela considerável da população. A fim de se ter economia de escala, os materiais são geralmente produzidos em grande número por poucas indústrias de porte; com isso, os produtos são transportados por longas distâncias num país como o nosso. Por essa razão, o desenvolvimento de materiais que têm um consumo global de energia baixo e que podem ser produzidos localmente, é bastante importante para a redução do custo da edificação.

No desenvolvimento de componentes alternativos fibrosos, o preço da fibra é parte considerável do custo final de produção, podendo chegar a um quarto do custo total, incluindo mão-de-obra e depreciação de equipamentos.

No Brasil existem inúmeras indústrias que se utilizam do couro como matéria-prima para obtenção de vários artigos. Observa-se que ocorrem grandes sobras de resíduos, aparentemente inaproveitáveis, que quase sempre são queimados, enterrados, ou, ainda, vendidos por preços irrisórios.

MATERIAIS E MÉTODOS

Para se tornar viável a fabricação deste novo componente, faz-se mister o estudo do comportamento do material em questão.

Desta maneira, foi desenvolvida uma série de ensaios tecnológicos, dentre os quais estão compreendidos: Resistência à Compressão Axial de Corpos de Prova Cilíndricos, Resistência à Flexão de Corpos de Prova Prismáticos e Resistência ao Impacto de Placas.

Todos os ensaios foram executados com argamassa de cimento simples e com argamassa de cimento com raspa de couro. Os procedimentos para a execução dos mesmos basearam-se em normas específicas editadas pela ABNT (Associação Brasileira de Normas Técnicas) e ASTM (American Society for Testing and Materials), discorrendo apenas na quantidade de material devidamente associada à associação de raspa de couro na mistura e da utilização de areia comum para a construção.

RESULTADOS

Resistência à Compressão

Analizando os resultados do ensaio de Resistência à Compressão, constatou-se que, com o acréscimo da raspa de couro na ar-
gamassa de cimento, a resistência diminuiu em relação à argamassa simples. Isto é proveniente da adição da raspagem que ocupa os espaços da argamassa. A resistência à compressão axial, também, é reduzida devido à necessidade de se adicionar mais água à mistura. Ambos fatores aumentam a porosidade do material.

Comparando um corpo de prova moldado com argamassa simples e com um determinado fator água/cimento (A/C) e um corpo de prova moldado com raspa de couro, notou-se a necessidade de adicionar mais água à mistura, alterando o fator A/C. Sabe-se que aumentando o fator A/C, a resistência tende a diminuir, o que vem a provar os resultados deste ensaio.

Resistência à Flexão
Com base nos resultados, avaliou-se que a utilização adequada de fibras em matrizes de argamassa de cimento, bem como de gesso, modifica as características desses materiais frágeis e, de acordo com o tipo, dimensões e volume de fibras, proporções dos elementos da matriz e método de fabricação, pode-se promover um acréscimo na resistência à flexão.

Além disso, notou-se uma diferença no tempo de ruptura das matrizes, ou seja, as constituídas com raspa de couro demoraram mais para romper (dificuldade de rompimento devido à eficiência das fibras), enquanto o corpo de prova, com argamassa simples, rompeu diretamente e em menor tempo.

Resistência ao Impacto
Verificando o resultado do ensaio referente à placa de argamassa de cimento e outra placa de argamassa de cimento com raspa de couro, constatou-se:

— Placa com argamassa simples: A placa com 40 cm X 40 cm X 2 cm rompeu totalmente com o impacto de uma esfera metálica de 1.240g a uma altura de queda de 50cm. Durante o ensaio, a altura de aproximadamente 30 cm ocorreu a primeira fissura; com 40 cm ocasionou um aumento da fissura; e, finalmente, a 50 cm a placa se rompeu.

— Placa com argamassa de cimento e raspa de couro: Avaliando a placa de acordo com a altura de queda, obtivemos:

— Até 50 cm ... placa intacta,
— 60 cm ... aparecimento da fissura,
— 80 cm ... aumento visual da fissura, e
— 100 cm ... rompimento da placa sem a sua separação.

Durante o ensaio, notou-se um abaulamento na face oposta à aplicação da carga. Comparando as duas placas conclui-se que a placa confeccionada com argamassa de cimento e raspa de couro resistiu mais ao impacto do que a placa de argamassa normal. Dito isto, nota-se a eficiência da raspa de couro como reforço da placa.

CONCLUSÃO

Este trabalho foi elaborado com a finalidade de estudar o comportamento das fibras de origem animal associada à argamassa de cimento, bem como a sua aplicação na fabricação de um componente de habitação que seria utilizado como placa de forro.

De acordo com os resultados dos ensaios, baseados nos primeiros estudos, verificou-se que o componente, constituído com raspa de couro, tem: maior resistência ao impacto, o reforço proporciona uma capacidade de carga após a fissuração da peça, através da mesma pode-se ter um controle de fissuração e mudança no comportamento na ruptura.

É conveniente lembrar que, na Argentina, é comum as alarjas utilizarem rebarbas de couro como argila (na base de 60% de argila por 40% de couro desfibra) para a fabricação de tijolos para obtenção de ganhos no que se refere à leveza do produto e economia na estrutura de concreto.

Para evitar os efeitos higroscópicos e de permeabilidade, utiliza-se, por vezes, um processo caro: lavagem da salinidade e filtro prense. A moagem é feita com moinho de navajas cortantes com ajustamento apropriado (reduzido o material quase a pó). O moinho "martelo" não triturada adequadamente e a fibra fica bruta.

Com moagem adequada, com partículas menores, obtém-se um acabamento final de melhor qualidade. Há percalços. O índice de acidez do material pode afetar os materiais. É, pois, preciso triturar,olar e neutralizar o couro.

Quanto à salinidade, pode ser tirada com tratamento de água alcalinizada. O material salinizado, assim como a acidez, além de afetarem os materiais metálicos, afetam o próprio material argilosso (com o tempo se esfareia).

Tem-se vagas informações sobre eventuais utilizações de couro desfibra no elaboração dos asfaltos e concretos viárias. Nestes casos, proporcionam uma adesão de estrutura em substituição ao cascalho.

Mediante todos esses exemplos, conclui-se que é perfeitamente possível a utilização da fibra de couro para a composição de placas de forro. Entretanto, é necessário que os estudos referentes a este tipo de material alternativo tenham continuidade para que haja garantia do bom desempenho do material.
REFERÊNCIAS BIBLIOGRÁFICAS

NORMAS TÉCNICAS:
- NBR-7217 = Ensaio de Determinação da Composição Granulométrica dos Agregados.
- NBR-7215 = Ensaio de Resistência à Compressão do Cimento.
- NBR-5738 = Confeção e Cura de Corpos de Prova de Concreto, Cilíndricos ou Prismáticos.
- ASTM C348-C = Flexural Strength of Hydraulic Cement Mortars.

APLICAÇÃO DOS ENSAIOS NÃO DESTRUTIVOS *

Eng. Mec. Biagio Loberto **
MSc Cesar Lucio Molitz Allenstein ***

ABSTRACT

The aim of this article is to show that the Quality Control through the Non-Destructive Testing has advantages such as to control the raw-material, to reduce the maintenance and manufacture costs, and to establish the safety of machine operation, equipments or industrial products.

RESUMO

Este artigo foi elaborado com a finalidade de mostrar que o Controle de Qualidade através de Ensaios Não Destrutivos traz vantagens, seja para controlar a matéria-prima, reduzir custos de manutenção ou fabricação e garantir a segurança de operação de máquinas, equipamentos ou produtos industriais.

1. INTRODUÇÃO

As unidades modernas de geração de energia destinadas, principalmente, à melhoria de qualidade de vida, trouxeram consigo riscos de operação em virtude das altas potências geradas, sendo necessário o desenvolvimento de tecnologias que permitam controle contínuo dos materiais utilizados no processo.

Além disso, o padrão econômico moderno está baseado em disputa internacional de mercados com produtos de maior desempenho e qualidade, exigindo mais dedicação das fábricas no controle total do produto e na produção com custos controlados de manutenção.

A aplicação dos ENSAIOS NÃO DESTRUTIVOS — END —, no controle de qualidade e na manutenção, tem sido cada vez mais difundida pela simplicidade dos métodos, redução de custos e resultados rápidos e precisos.

Procurou-se, aqui, apresentar, de forma simplificada, conceitos relativos à escolha do método de END mais apropriado a diversos casos correntes nas unidades fabris.

(*) Artigo apresentado no II SPEIND — Seminário Paranaense de Engenharia Industrial, classificado em 3º lugar do prêmio Paraná de Engenharia Mecânica, 1987.

(**) Biagio Loberto, Engenheiro Mecânico; Professor de Ensaio de Materiais no CEFET-PR; Diretor Técnico da Engisa Inspeção e Pesquisa Aplicada à Indústria Ltda.

(***) Cesar Lucio Molitz Allenstein, Professor de Ensaios de Materiais no CEFET-PR; Mestre em Engenharia Metalúrgica e de Materiais; Diretor de Pesquisa e Desenvolvimento da Engisa Inspeção e Pesquisa Aplicada à Indústria Ltda.