

https://periodicos.utfpr.edu.br/rbta

Mathematical modeling of drying the pulped coffee (*Coffea arabica* I.) at different air conditions

RESUMO

Paulo Carteri Coradi

paulocoradi@yahoo.com.br orcid.orq/0000-0001-9150-2169 Universidade Federal de Santa Maria, Cachoeira do Sul, Rio Grande do Sul, Brasil

Flávio Meira Borém flavioborem@deq.ufla.br Universidade Federal de Lavras, Lavras, Minas Gerais, Brasil

Carlos Henrique Reinato carlosreinato@bol.com.br Escola Agrotécnica Federal de Machado, Machado, Minas Gerais, Brasil The aim of the study was to describe the drying kinetics of washed coffee (*Coffea arabica* L.) and evaluate the best mathematical model to fit the experimental drying data conducted with different air humidity (40 %, 50 %, and 60 %) and temperatures (23 °C, 40 °C, and 60 °C). The fruit shakes were standardized washing, separation, and manual selection of green coffees, pass cane, and green buoy. Then, approx. 150 L of coffee cherries were pulped and taken directly to the yard. Drying the washed coffee was completed in a mechanical dryer and yard. The obtained results showed that the different conditions of the ambient air significantly influenced the processes of drying pulped coffee. The water content of the hygroscopic equilibrium of pulped coffee is directly proportional to the water activity and relative humidity, decreasing with increasing temperature, for the same value of equilibrium relative humidity. The Oswin model was best represented by the hygroscopicity of the pulped coffee. The effective diffusion coefficient increases with increasing temperature of the drying air and reducing of relative humidity, being described by the Arrhenius equation

PALAVRAS-CHAVE: Drying. Mathematical Modeling. Pulped Coffee.

Página | 2397

R. bras. Tecnol. Agroindustr., Ponta Grossa, v. 11, n. 2: p. 2397-2419, jul./dez. 2017.

INTRODUCTION

There are several factors that influence the final quality of the coffee, as soil and climate characteristics, cultivars, driving and crop management, harvesting, processing, drying, and storage. There are various forms of processing that result in major differences in the sensory attributes and there are common reports of superiority to coffee peeled and pulped and in relation to natural coffee. Drying is one of the most important stages in the processing of coffee, both from the standpoint of energy consumption and the influence this has on the operation quality of the final product. Given these problems, we seek greater control of the drying parameters (temperature of the grain mass, relative humidity, and air flow) in order to minimize adverse situations to the product. On the other hand, if the best drying techniques are not used, the quality may be impaired as a result of physical, chemical, and sensory (BORÉM et al., 2008; SAATH et al., 2010). The drying of agricultural products, thin layer, has the purpose of determining the rates of drying of the product using for data collection recording the mass loss occurred in a sample during water removal (RESENDE et al., 2009).

Thus, the drying curves, thin layer, vary with species, variety, environmental conditions, methods staging post-harvest, among other factors. Accordingly, various mathematical models have been used to describe the drying of agricultural produce, although in most cases, the semi-empirical relationships and empirical have been shown to predict the best options for the drying of grains and seeds, although its validity is restricted to the conditions under which the experimental data were obtained (RESENDE et al., 2009; CORADI et al., 2014). These models generally are based on variables external to the product, such as the temperature and relative humidity of the drying air. The semi-empirical equations are based on Newton's law of cooling heat transfer by convection, assuming that during the drying conditions are isothermal and that the water transfer is restricted to the surface of the product. Thus, the aim of the study was to describe the drying kinetics of washed coffee (*Coffea arabica* L.) and evaluate the best mathematical model to fit the experimental drying data conducted with different air humidity (40 %, 50 %, and 60 %) and temperatures (23 °C, 40 °C, and 60 °C).

MATERIAL AND METHODS

This work was conducted at the Department of Engineering and Technology Center of Post-Harvest Coffee, Federal University of Lavras. The coffee was harvested manually and selectively removing only the cherry fruit from the plant. For each repetition, 800 liters of the coffee variety Topazio were collected. All the raw materials were standardized by the washing, separation, and manual selection of green coffees; green cane passes, and buoy (Figure 1).

Figure 1 - Process of coffee stripping (left) and process of coffee pulping (right)

Fonte: Authors elaboration (2014)

Then, about 150 liters of coffee cherries were pulped and taken directly to the yard. The pulped coffee was divided into distinct segments in the yard, remaining for two days, so that the beans were taken for mechanical drying (40 and 60 \pm 2 °C to 40, 50, and 60 \pm 5% RH) and complete drying in the yard (23 \pm 2 °C to 40, 50, and 60 \pm 5% RH) (Figure 2).

During the time that the coffee remained in the yard, turnings were made every half hour and monitoring the temperature and relative humidity of the ambient air using a term hygrograph. Mechanical drying was conducted on two prototypes of fixed layer.

Figure 2 - Drying of natural and washed coffees in yard (left) and fixed bed dryers prototypes (right)

Fonte: Authors elaboration (2014)

To obtain the air flow diaphragm used a graduated opening in the fan inlet. The determination of the water content was performed by standard oven at 105 ± 3 °C for 24 hours (BRASIL, 2009). The drying curves were fitted to the experimental data using thirteen different semi-empirical and empirical equations discriminated below.

Equation	Models	Number
$\mathrm{RU} = \exp(-\mathbf{k} \cdot \mathbf{t})$	Newton	(1)
$\mathbf{RU} = \exp(-\mathbf{k} \cdot \mathbf{t}^{n})$	Page	(2)
$RU = \exp\left(-\left(\begin{array}{c} k \cdot t \end{array}\right)^n\right)$	Page Modified	(3)
RU = exp (- a- $(a^2 + 4 b t)^{1/2}$) / 2 b	Thompson	(4)
$RU = \frac{U - Ue}{Ui - Ue} = \frac{8}{\pi} \sum_{n=0}^{\infty} \frac{1}{(2n+1)} \exp\left[-(2n+1)\pi D\frac{t}{4L}\right]$	Eight Diffusion Terms	(5)
$RU = a \cdot exp(-k \cdot t)$	Henderson and Pabis	(6)
RU = aexp(-kt) + c	Logarithmic	(7)
$RU = a \cdot exp(-k_0 \cdot t) + b \cdot exp(-k_1 \cdot t)$	Two Terms	(8)
$RU = a \cdot exp(-k \cdot t) + (1-a)exp(-k \cdot a \cdot t)$	Two Exponential Terms	(9)
$RU = 1 + a t + b t^2$	Wang and Singh	(10)
$RU = a \cdot \exp(-k \cdot t) + b \cdot \exp(-k_0 \cdot t) + c \cdot \exp(-k_1 \cdot t)$	Henderson and Pabis Modified	(11)
$\mathbf{RU} = \mathbf{a} \cdot \exp(-\mathbf{k} \cdot \mathbf{t}^{n}) + \mathbf{b} \cdot \mathbf{t}$	Midilli	(12)
$RU = a \cdot \exp(-k \cdot t) + (1 - a) \cdot \exp(-k \cdot b \cdot t)$	Diffusion approximation	(13)

Fonte: Authors elaboration (2014)

$$RU = \frac{U^* - U^*_e}{U^*_i - U^*_e}$$
(14)

wherein,

U*: water content of product (% d.b.); Ui*:initial water content of the product (% d.b.); Ue*: equilibrium water content of the product (% d.b.).

It is usual to consider the value of the diffusion coefficient constant or linearly dependent on the temperature of the drying air.

$$D = A \exp\left(-\frac{E}{RT}\right)$$
(15)

wherein,

A: constant (m² s⁻¹); E: activation energy (kJ kmol⁻¹); R: universal gas constant (8,314 kJ kmol⁻¹ K⁻¹); Tabs: absolute temperature (K).

The coefficients of the Arrhenius expression were linearized by applying the logarithm of the form:

$$LnD = LnA - \frac{E}{RT} \frac{1}{Ta}$$
(16)

To obtain the water content of the hygroscopic equilibrium of coffee the dynamic-gravimetric method was used. A desorption thin layer of the product was performed for different controlled conditions of temperature (23, 40, and 60 °C) and relative humidity of the drying air 40, 50, and 60 % until the product reached the equilibrium moisture content with air condition specified. Temperature and relative humidity were monitored by means of a psychrometer installed next to trays containing the samples. During the drying, the trays with the product were weighed periodically and the hygroscopic equilibrium was reached when the mass change of the containers to remain unchanged for three consecutive weightings. The experimental data of the equilibrium water content was adjusted mathematical models are frequently used to represent the hygroscopic agricultural products, whose expressions are shown below.

Model designa	tion Models	Number
Sigma Copace	$\mathbf{U}_{e}^{*} = \exp\left\{ a - (b \cdot T) + \left[c \cdot \exp(a_{w}) \right] \right\}$	(17)
Sabbah	$U_{e}^{*} = a \cdot \left(a_{w}^{b} / T^{c} \right)$	(18)
Oswin	$\mathbf{U}_{e}^{*} = \left(\mathbf{a} + \mathbf{b} \mathbf{T}\right) / \left[\left(1 - \mathbf{a}_{w}\right) / \mathbf{a}_{w}\right]^{1/c}$	(19)
Henderson	$U_{e}^{*} = \left[\ln (1 - a_{w}) / (-a \cdot T + 273, 16) \right]^{1/b}$	(20)
Henderson Modificado	$U_{e}^{*} = \left\{ \ln (1 - a_{w}) / \left[-a \cdot (T + b) \right] \right\}^{1/c}$	(21)
Halsey Modificado	$U_e^* = \left[\exp(a-b \cdot T) / -\ln(a_w) \right]^{1/c}$	(22)
GAB	$\mathbf{U}_{e}^{*} = (\mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c} \cdot \mathbf{a}_{w}) / \left[(1 - \mathbf{c} \cdot \mathbf{a}_{w}) \cdot (1 - \mathbf{c} \cdot \mathbf{a}_{w} + \mathbf{b} \cdot \mathbf{c} \cdot \mathbf{a}_{w}) \right]$	(23)
Copace	$U_{e}^{*} = \exp\left[a - (b \cdot T) + (c \cdot a_{w})\right]$	(24)
Chung Pfost	$U_{e}^{*} = a - b \cdot \ln \left[-(T + c) \cdot \ln \left(a_{w} \right) \right]$	(25)
BET	$\mathbf{U}_{e}^{*} = \left\{ \frac{1}{\left[\left(1 - a_{w} \right) \cdot \left(\frac{1}{a \cdot b} + \left(\frac{(a-1)}{a \cdot b} \right) \right) \right]} \right\}$	(26)

Fonte: Authors elaboration (2014)

wherein,

 U_e^* : equilibrium water content, % d.b.; a_w : water activity, decimal; T: temperature, °C; a, b, c: coefficients that depend on the product.

The experimental design was a completely randomized design (CRD) with three tests for each drying air velocity and drying temperatures. To adjust the mathematical models analysis were performed nonlinear regression, Quasi-Newton method, using the computer program Statistica 7.0[®]. To check the degree of fit of each model was considered the significance of the regression coefficient by t-test, adopting the 5% level of probability, the magnitude of the coefficient of determination (R²), the mean relative error values (P) and the average estimated error (SE) and verified the behavior of distribution of residuals. The relative average error and the average error estimated for each model were calculated according to the following expressions, respectively:

$$P = \frac{100}{n} \sum \frac{\left|Y - \hat{Y}\right|}{Y}$$
(27)

$$SE = \sqrt{\frac{\sum (\gamma - \hat{\gamma})^2}{GLR}}$$
(28)

Página | 2402

wherein,

Y: experimentally observed value; $\hat{\mathbf{Y}}_{:}$ value calculated by the model; n : number of experimental observations; DF: degrees of freedom of the model (the number of observations minus the number of model parameters).

RESULTS AND DISCUSSION

It can be seen in Table 1 that the mathematical models used to describe the fermented coffee hygroscopicity presented, for most of its coefficients, a regression significance level of 5% probability level by the t test and, in general, the models showed values of high coefficient of determination greater than 0.90 except for the models BET, GAB, Henderson, Modified Henderson, Chung, and Pfost that were below 80%. For further analysis, we used other statistical parameters to support the selection of the best model. Table 1 shows the summary of the mathematical models evaluated, with the parameters adjusted by nonlinear regression to the experimental data of the equilibrium moisture content of the washed coffee, obtained by desorption with the coefficients adjusted determination (R²) and average errors for (P) and estimated (SE). It is observed in Table 1 that the equations based on the models of Oswin, Sigma Copace, and Copace showed satisfactory adjustments to the experimental data of the equilibrium moisture content of the washed coffee, with better results for the Oswin model, since it had coefficients of determination set high and average relative errors and estimated very low, independent of the temperature and relative humidity of the drying air. Therefore, when comparing the values of the equilibrium moisture content of hygroscopic coffee that was not pulped, note that the values of equilibrium water content were higher for lower temperatures and higher relative humidity of the air.

Table 1 - Parameter values estimated, mean relative error (P), standard deviation of the estimate (SE), coefficient of determination (R2) and residual distribution for mathematical models of drying relative humidity average of 40, 50 and 60% of washed coffee (*Coffea arabica L*.)

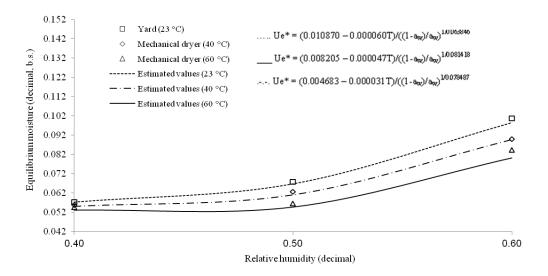
Estimation of parameters*	R² (%)	P (%)	SE (decimal)	Distribution of residue
		RH=40%		
a = -0.642501				
b = 0.007091	99.45	0.35517	0.0017	А
c = -1.00785				
a = 0.243954				
b = 0.080254	97.18	0.78707	0.0039	А
c = 0.261574				
	parameters* a = -0.642501 b = 0.007091 c = -1.00785 a = 0.243954 b = 0.080254	parameters* a = -0.642501 b = 0.007091 99.45 c = -1.00785 a = 0.243954 b = 0.080254 97.18	parameters* RH=40% a = -0.642501 99.45 0.35517 b = 0.007091 99.45 0.35517 c = -1.00785 2000000000000000000000000000000000000	parameters* (decimal) RH=40% a = -0.642501 0.35517 0.0017 b = 0.007091 99.45 0.35517 0.0017 c = -1.00785 0.043954 0.78707 0.0039

Table 1 - Parameter values estimated, mean relative error (P), standard deviation of the estimate (SE), coefficient of determination (R2) and residual distribution for mathematical models of drying relative humidity average of 40, 50 and 60% of washed coffee (*Coffea arabica L.*)-c cont.

Mathematical models	Estimation of	R² (%)	P (%)	SE (decimal)	Distribution
	parameters*		DU-40%		of residue
	a = 0.010870		RH=40%		
Oswin	b = -0.000060	99.77	0.22752	0.0011	А
00000	c = 0.063846	55177	0.227.02	0.0011	
	a = 0.348912	57.81	0.91484	0.0048	т
Henderson	b = 0.012984				
	a = 5.860900				
Henderson Modified	b = 102.1729	98.99	0.48011	0.0023	А
	c = 0.012553				
	a = -0.005891				
Halsey Modified	b = 1.358511	86.12	0.75809	0.0035	А
	c = -2.64225				
	a = 0.518185				
GAB	b = 0.508084	65.78	3.09819	0.0164	Т
	c = 0.571646				
	a = -1.87077				
Copace	b = 0.007091	99.45	0.35509	0.0017	A
	c = -0.688173				
	a = 0.02345				
Chung Pfost	b = 0.34910	66.83	1.01079	0.0047	Т
	c = 0.01925	co o 7	0.00040	0.0464	-
BET	a = 0.099957	68.37	3.09819	0.0164	Т
	b = 18.95246				
Comân	a = 4.404755	07.10	0 70700	0.0020	Ŧ
Corrêa	b = 0.261799	97.18	0.78700	0.0039	Т
	c = 5.118700		RH=50%		
	a = -0.579038		KII-30%		
Sigma copace	b = 0.007495	99.97	0.08480	0.0004	А
	c = -1.01976				
	a = 0.225061				
Sabbah	b = 0.086620	98.77	0.54597	0.0024	А
	c = 0.279099				
	a = 0.008205				
Oswin	b = -0.000047	99.99	0.05610	0.0002	А
	c = 0.081418				
	a = -0.67298	60.34	0.86462	0.0035	Т
Henderson	b = 0.082145				
	a = 10.45824				
Henderson Modified	b = 93.12367	99.80	0.23084	0.0010	A
	c = 0.006479				
	a = -30.7154	~~ ~~	0	0.0000	
Halsey Modified	b = 0.437228	88.23	0.71955	0.0030	A
	c = -0.007432				

Table 1 - Parameter values estimated, mean relative error (P), standard deviation of the estimate (SE), coefficient of determination (R2) and residual distribution for mathematical models of drving relative humidity average of 40, 50 and 60% of washed coffee (*Coffeg arabica L*)-c cont.

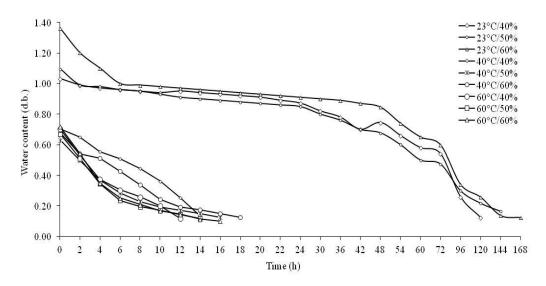
drying relative hu	midity average of 4			(Coffea arabica	a L.)-c cont.
Mathematical models	Estimation of	R² (%)	P (%)	SE	Distribution
	parameters*			(decimal)	of residue
			RH=50%		
	a = 0.452697				
GAB	b = 0.447961	85.12	3.11689	0.0151	Т
	c = 0.494803				
	a = -1.82833				
Copace	b = 0.007495	99.97	0.08483	0.0004	A
	c = -0.864013				
	a = 0.065384				
Chung Pfost	b = -0.23489	64.91	0.43173	0.0017	Т
	c = 0.341839				
BET	a = 0.100045	67.29	3.11689	0.0151	Т
	b = 25.90399				
	a = 4.707968				
Corrêa	b = 0.279407	98.77	0.54586	0.0024	A
	c = 6.202011				
			RH=60%		
	a = -0.511717				_
Sigma Copace	b = 0.009224	99.87	0.21767	0.0008	A
	c = -1.01499				
	a = 0.237165				
Sabbah	b = 0.085298	99.66	0.35028	0.0013	A
	c = 0.345157				
	a = .004683				
Oswin	b = -0.000031	99.99	0.00309	0.0008	A
	c = 0.078487				
Henderson	a = -0.28945	62.45	0.51089	0.0017	Т
	b = 0.435612				
	a = 1.194248				
Henderson Modified	b = 68.75019	99.99	0.00720	0.0000261	A
	c = 0.109214				
	a = -35.2389				
Halsey Modified	b = 0.283401	67.84	0.68119	0.0024	Т
	c = -0.007166				
	a = 0.396879				
GAB	b = 0.394938	53.12	3.85968	0.0156	Т
	c = 0.432867				
	a = -1.75386				
Copace	b = 0.009224	99.87	0.21771	0.0008	A
	c = -1.01216				
	a = -0.83451				
Oswin	b = 0.341892	57.26	0.85149	0.0030	Т
	c = 0.451280				
	a = 0.008205				
Chung Pfost	b = -0.000047	99.99	0.05610	0.0002	A
	c = 0.081418				
BET	a = 0.100031	68.29	3.85968	0.0156	Т
	b = 38.31723				
	a = 4.377243				
Corrêa	b = 0.346115	99.66	0.34983	0.0013	A
	c = 6.261876				


*All estimated coefficients were significant at 5% probability by t test. A – aleatory distribution

Fonte: Authors elaboration (2014)

The equations based on the models of Oswin, Sigma Copace, and Copace showed satisfactory adjustments to the experimental data of equilibrium moisture content of the washed coffee, with better results for the Oswin model (Table 1), since it had coefficients of determination set high and average relative errors and estimated very low, independent of temperature and relative humidity of the drying air. Therefore, when comparing the values of equilibrium moisture content of hygroscopic coffee that was not pulped, note that the values of equilibrium water content were higher for lower temperatures and higher relative humidity of the air. Figure 3 shows the experimental values of equilibrium water content of the fermented coffee obtained by desorption isotherms as well as estimated by the model Oswin. The constant water activity values of equilibrium water content of hygroscopic fermented coffee decreased with increasing temperature and with decreasing relative humidity.

Figure 3 - Observed and predicted values by Oswin model of water content equilibrium moisture content of the natural coffee obtained by desorption for different conditions of temperature and water activity. *Significant at 5% probability by the t test


Fonte: Authors elaboration (2014)

The isotherms calculated by the pulped coffee Oswin model can be classified as type III as verified for the seeds of radish by SOUSA et al. (2013) and for crambe (SOUZA et al., 2011). Nevertheless, for most agricultural products, isotherms showed a typical sigmoidal shape (type II). Figure 4 shows the mean values of the water content of the fermented coffee beans during drying in different conditions of temperature and relative humidity. Looking at Figure 4, it is found that the time required to reach the fermented coffee water content 0.11 (d.b. decimal) was 12 to 168 h, demonstrating the

increased speed of withdrawal of water at 60°C and 40% relative humidity. As expected, the drying time is affected by air temperature, noting a greater difference between temperatures of 60 °C and 23 °C. It is also observed in Figure 4 that with increasing temperature of the drying air, there is a higher rate of removal of product water, as noted by many researchers for many agricultural products (PENA et al., 2010; REIS et al., 2011).

Figure 4 - Curves of drying coffee cherries processed naturally

Fonte: Authors elaboration (2014)

Table 2 shows the coefficients of the models adjusted for the coffee that was not pulped and that was analyzed during drying at different drying air temperatures and relative humidity conditions of the air. Among the models that gave good results, the Midilli model was selected to represent the phenomenon of drying coffee due to its simplicity compared to other models and selected to present a number of significant coefficients. It was observed that the magnitude of the drying constant (k) for the model Midilli, which represents the effect of external conditions drying increases linearly with the rise in temperature of the drying air (Table 2). The coefficient of determination was above 98% (Table 3), which according to MADAMBA et al. (1996), indicates a satisfactory representation of the phenomenon under study. According to this researcher, the use of the coefficient of determination as the only evaluation criterion for the selection of nonlinear models is not a good parameter to represent the drying phenomena.

However, analyzing the estimated average error (SE), which describes the value of the standard deviation of the estimate, it was found that the models Wang and Singh, Page, and Logarithmic Approximation of Diffusion, Midilli, Exponential for Two terms showed lower values for drying performed in different temperatures and relative humidity of the air. It is noteworthy that the lower the value of the standard deviation of the estimate (SE) is the better the quality of fit of the model will be relative to the observed data. RESENDE et al. (2009) also observed that the models Page, Diffusion Approximation and Midilli showed a low average error estimated during the modeling of drying coffee clones of Coffea canephora. It appears that most of the models presented values mean relative error less than 10%, which according to MOHAPATRA and RAO (2005) indicates an adequate representation of the phenomenon, except for models Thompson, Newton, Henderson, and two terms and Pabis.

Table 2. Parameters obtained from models fitted to the data for drying of washed coffee processing in the different temperatures of air drying and relative humidity of 40, 50 and 60%

Mathematical models				RH = 40%			
Exponential	т (⁰ С)	k					
	23	0.00700					
	40	0.09313					
	60	0.33476					
	T (⁰ C)	k	n				
Page	23	0.00045	1.55860				
	40	0.02064	1.64519				
	60	0.36838	1.00382				
Page Modified	T (⁰ C)	k	n				
	23	0.00004	0.08424				
	40	0.09456	1.64525				
	60	0.33624	0.97149				
	T (⁰ C)	а	b				
Thompson	23	-0.11199	1.79935				
	40	-1.00000	1.17550				
	60	-1.00000	1.08326				
	T (⁰ C)	а	k				
Henderson and	23	1.0506	0.00751				
Pabis	40	1.0904	0.10252				
	60	0.9965	0.33358				
	T (⁰ C)	а	k	С			
Logarithmic	23	0.42372	0.01462	0.34567			
Logarithmic	40	3.00380	0.02194	-1.97945			
	60	0.98510	0.34738	0.01543			
	T (⁰ C)	а	K ₀	b	k ₁		
	23	0.52538	0.00751	0.52538	0.00751		
Two terms	40	0.10752	0.10252	0.54520	0.10252		
	60	0.49829	0.33358	0.49829	0.33358		
	T (⁰ C)	а	k				
Two exponential	23	0.00486	1.41255				
terms	40	0.00707	12.8223				
	60	0.61493	0.40721				

Mathematical				RH = 4	40%		
models	T (⁰ 0)						
	T (⁰ C)	a	b				
Wang and Sing	23	-0.00371	-0.00001				
	40 60	-0.06070	0.00039				
	T (⁰ C)	-0.26310	0.01890	h	L.	-	
Henderson and	23	a 0.35016	k 0.00749	b 0.35016	k ₀ 0.00749	с 0.35016	k ₁ 0.00751
Modified Pabis	23 40	0.35016	0.00749	0.35016	0.10252	0.35016	0.10226
	40 60	0.33219	0.35358	0.30340	0.33358	0.33219	0.33358
Midilli	T (⁰ C)	0.55219 a	0.55556 k	0.55219 n	0.55556 b	0.55219	0.55556
IVIIUIIII	23	a 0.98137	к -0.01081	0.63020	-0.00661		
	40	0.98137	0.02184	1.52303	-0.00597		
	40 60	1.00236	0.34825	0.97495	0.000397		
Diffusion	T (⁰ C)		0.54625 k	0.97495 b	0.00042		
	23	a -3.36765	к 0.01787	0.78665			
approximation	23 40	-6.59768	0.22287	0.86600			
				0.80000			
Mathematical	60	0.13864	0.62679				
models				RH = 50%			
Exponential	T (⁰ C)	k					
	23	0.00494					
	40	0.12325					
	60	0.37000					
Page	T (⁰ C)	k	Ν				
i age	23	0.03218	0.60118				
	40	0.10506	1.07325				
	40 60	0.36838	1.00382				
Page Modified	T (⁰ C)	0.30838 k	1.00382 N				
rage woulded	23	0.17355	0.00004				
	40	0.17355	1.07325				
	60	0.36979	1.00383				
	T (⁰ C)	0.30373 a	1.00385 b				
	23	-0.11110	1.80077				
Thompson	40	-1.00000	1.18250				
	40 60	-1.00000	1.08307				
	T (⁰ C)	-1.00000 a	1.08507 k				
Henderson and	23	a 0.93002	к 0.00422				
Pabis	23 40	0.93002 1.00754	0.00422				
1 0.015	40 60	1.00734	0.12424				
	т (⁰ С)	1.01004 a	0.37375 k	С			
	23	0.52522	к 0.01373	0.45355			
Logarithmic	23 40	1.06942	0.10585	-0.07573			
	40 60	0.98503	0.10585	0.03466			
	T (⁰ C)			0.03466 b	Ŀ		
		a 0.148278	K ₀ 0.20371		k ₁ 0.00338		
Two terms	23 40	0.148278	0.29371 0.12424	0.85166 0.50377	0.12424		
	40 60	0.505020	0.12424	0.50577			
	T (⁰ C)		0.37375 k	0.30302	0.37375		
Two exponential		a 0.10511					
terms	23	0.10511	0.03784				
	40 60	0.01771	6.79073 0.46148				
	60 T (⁰ C)	0.59498	0.46148				
Wang and	T (⁰ C)	a 0.00001	b				
Sing	23	-0.00601	0.00001				
2	40	-0.09930	0.00276				
	60	-0.28540	0.02194				

Table 2. Parameters obtained from models fitted to the data for drying of washed coffee processing in the different temperatures of air drying and relative humidity of 40, 50 and 60%

1 0				, 0			
Mathematical models				RH = 50%			
	T (⁰ C)	а	k	b	k ₀	С	k ₁
Henderson	23	-0.31756	-0.00161	1.13613	0.00142	0.18148	0.09728
and Modified	40	0.33584	0.12424	0.33584	0.12424	0.33584	0.12424
Pabis	60	0.33670	0.37375	0.33670	0.37375	0.33670	0.37375
Midilli	T (⁰ C)	а	k	n	b		
	23	1.00006	0.87784	0.25203	-0.00146	5	
	40	0.99235	0.10855	1.02298	-0.00214		
	40 60	1.00562	0.35236	1.16389	0.00885		
Diffusion	T (⁰ C)		k		0.0085		
		a 0.15000		b			
approximation	23	0.15002	0.15492	0.02165			
	40	-2.07456	0.19230	0.85655			
	60	0.07034	0.10727	3.80032			
Exponential	T (⁰ C)	k		RH = 60%			
схропенца							
	23	0.00428					
	40 60	0.11165 0.36466					
	T (⁰ C)	0.36466 k	n				
Dago	23	0.09325	0.34419				
Page	23 40	0.09323	1.24176				
	40 60	0.06506	0.98406				
Page Modified	T (⁰ C)	k	n				
	23	0.17744	0.00003				
	40	0.11070	1.18175				
	60	0.36554	0.98406				
	T (⁰ C)	а	b				
Thompson	23	-0.10908	1.80400				
	40	-1.00000	1.18175				
	60	-1.00000	1.08332				
Henderson and	Т (⁰ С)	а	К				
Pabis	23	0.88749	0.00310				
	40	1.03076	0.11535				
	60	1.00641	0.36704				
	T (⁰ C)	а	К	С			
Logarithmic	23	0.395289	0.22969	0.57938			
-	40	1.239563	0.07663	-0.23818			
	60	0.980210	0.40651	0.03651			
	T (⁰ C)	а	K ₀	b	k ₁		
Two terms	23	0.21658	-0.01740	0.95959	0.00752		
	40	0.51537	0.11535	0.53535	0.11534		
	60	0.50321	0.36704	0.51337	0.36704		
Two	T (⁰ C)	a	k	5.000E1	0.00704		
exponential	23	0.11080	0.03008				
terms	40	1.77245	0.15702				
	40 60	0.55580	0.13702				
	т (⁰ С)		b.48030				
Mana and Cina		a 0.00745					
	23	-0.00745	0.00003				
wang and Sing	40		0.00209				
wang and Sing	40	-0.08810					
wang and Sing	60	-0.28150	0.02143				<u> </u>
	60 T (⁰ C)	-0.28150 a	k	b	k ₀	С	k ₁
Henderson and	60 T (⁰ C) 23	-0.28150 a 1.49017	k 0.00898	-0.53230	0.01601	0.00166	-0.03273
Wang and Sing Henderson and Modified Pabis	60 T (⁰ C)	-0.28150 a	k				

Table 2. Parameters obtained from models fitted to the data for drying of washed coffee processing in the different temperatures of air drying and relative humidity of 40, 50 and 60%

Mathematical models		RH = 50%					
	T (⁰ C)	а	k	n	b		
Midilli	23	0.97188	0.00857	1.06740	0.00296		
	40	0.97144	0.05386	1.31332	0.00018		
	60	1.00690	0.36186	1.10794	0.00751		
	т (⁰ С)	а	k	b			
Diffusion	23	0.22720	0.46930	0.00390			
approximation	40	-4.03326	0.21346	0.86256			
	60	0.08348	0.11058	3.69000			

Table 2. Parameters obtained from models fitted to the data for drying of washed coffee processing in the different temperatures of air drying and relative humidity of 40, 50 and 60%

Fonte: Authors elaboration (2014)

The models of Thompson and Diffusion of Eight Terms achieved, for modeling the drying of washed coffee, the biased distribution of waste, thus resulting in poor fits to the experimental data, while all other models corroborated with results verified by RESENDE et al. (2009) for the modeling of drying coffee clones. All the models that were evaluated attended satisfactory the P, SE, and distribution residue, but the Midilli model was better that other evaluated because presented higher R² for all.

Table 3. Coefficients of determination (R^2), mean relative errors (P) and mean estimated errors (SE) for the models analyzed during drying of the washed coffee under various temperature conditions and relative humidity of 40, 50 and 60%

Mathematical 23 Models	°c	UR = 40% 50 ⁰ C	60 ⁰ C
		R ² (%)	
Exponential	93.86	96.45	99.81
Page	96.20	99.51	99.82
Page Modified	62.00	99.51	99.82
Thompson	55.10	55.67	48.70
Henderson and Pabis	94.25	97.19	99.81
Logarithmic	67.15	99.47	99.82
Two Terms	94.25	97.19	99.81
Two exponential terms	93.77	96.31	99.82
Wang and Singh	98.12	99.44	99.31
Henderson and Pabis Modified	94.25	97.19	99.81
Midilli	98.84	99.65	99.82
Diffusion approximation	96.36	99.23	99.82
		P (%)	
Exponential	7.13	11.74	19.57
Page	0.04	11.62	19.36
Page Modified	10.47	11.62	19.37
Thompson	60.73	79.42	32.37
Henderson and Pabis	1.56	0.88	1.47
Logarithmic	90.02	0.54	0.89
Two Terms	1.62	0.88	1.47
Two exponential terms	3.20	2.97	4.96

Table 3. Coefficients of determination (R^2) , mean relative errors (P) and mean estimated errors (SE) for the models analyzed during drying of the washed coffee under various temperature conditions and relative humidity of 40, 50 and 60%

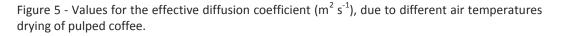
		UR = 40%	
Mathematical 23 Models	°c	50 ^⁰ C	60 °C
		P (%)	
Wang and Singh	7.51	8.26	13.77
Henderson and Pabis Modified	1.25	0.88	1.47
Midilli	0.03	2.55	4.24
Diffusion approximation	9.42	12.60	21.00
	SE (c	lecimal)	
Exponential	0.0773	0.0880	0.0682
Page	0.0002	0.0347	0.0553
Page Modified	0.1837	0.0347	0.0553
Thompson	0.4777	0.5607	0.6809
Henderson and Pabis	0.0767	0.0767	0.0721
Logarithmic	0.1407	0.0352	0.0575
Two Terms	0.0848	0.0886	0.1020
Two exponential terms	0.0813	0.0951	0.0544
Wang and Singh	0.0451	0.0374	0.0720
Henderson and Pabis Modified	0.0962	0.1085	0.1442
Midilli	0.0535	0.0335	0.0727
Diffusion approximation	0.0656	0.0467	0.0618
		istribution of resid	
Exponential	<u>A</u>	A	A
Page	A	A	A
Page Modified	A	A	A
Thompson	Т	Т	Т
Henderson and Pabis	A	A	A
Logarithmic	Т	A	A
Two Terms		A	A
	A		
Two exponential terms	A	A	A
Wang and Singh	A	A	A
Henderson and Pabis Modified	A	A	A
Midilli	A	A	A
Diffusion approximation	A	A UR = 50%	A
	23 °C	OR = 50% 50 ⁰ C	60 ⁰ C
Mathematical 2 Models	23 L	50 C	60°C
		R ² (%)	
Exponential	91.52	99.69	99.62
Page	96.26	99.77	99.62
Page Modified	65.15	99.77	99.62
Thompson	55.68	62.81	19.38
Henderson and Pabis	93.79	99.70	99.63
Logarithmic	95.43	99.80	99.71
Two Terms	95.45 96.41	99.80	99.63
Two exponential terms	94.70	99.66	99.65
Wang and Singh	93.67	99.73	99.13
Henderson and Pabis	96.46	99.70	99.63
Modified	0.0.45	00.07	00.07
Midilli	96.48	99.82	99.82
Diffusion approximation	96.41	99.79	99.67

		UR = 50%			
Mathematical 23 Models	°c	50 °C	60 ⁰ C		
		P (%)			
Exponential	16.23	3.66	6.11		
Page	0.47	4.87	8.12		
Page Modified	56.76	4.87	8.12		
Thompson	25.88	58.28	63.80		
Henderson and Pabis	9.38	4.12	6.87		
Logarithmic	3.03	1.51	2.52		
Two Terms	0.03	4.12	6.87		
Two exponential terms	8.48	5.68	9.46		
Wang and Singh	9.63	8.87	14.79		
Henderson and Pabis			_		
Modified	0.07	4.12	6.87		
Midilli	0.01	1.95	3.25		
Diffusion approximation	0.76	3.88	6.47		
	0.70	SE (decimal)	0.47		
Exponential	0.0522		0.0217		
Exponential	0.0533	0.0236	0.0317		
Page	0.0375	0.0218	0.0309		
Page Modified	0.2225	0.0218	0.0309		
Thompson	0.5054	0.4424	0.6257		
Henderson and Pabis	0.0431	0.0247	0.0349		
Logarithmic	0.0408	0.0202	0.0286		
Two Terms	0.0406	0.0285	0.0494		
Two exponential terms	0.0485	0.0265	0.0375		
Wang and Singh	0.0484	0.0234	0.0331		
Henderson and Pabis Modified	0.0457	0.0349	0.0699		
Midilli	0.0402	0.0235	0.0406		
Diffusion approximation	0.0385	0.0220	0.0337		
		Distribution of	residue		
Exponential	A	A	A		
Page	A	A	A		
Page Modified	Т	A	A		
Thompson	Т	Т	Т		
Henderson and Pabis	A	А	А		
Logarithmic	А	A	А		
Two Terms	А	А	А		
Two exponential terms	А	А	А		
Wang and Singh	А	А	А		
Henderson and Pabis Modified	А	А	А		
Midilli	А	А	А		
Diffusion approximation	А	А	А		
		UR = 60%			
		R ² (%)			
Exponential	51.31	98.67	99.63		
Page	65.68	99.30	99.64		
Page Modified	52.10	99.30	99.64		
Thompson	58.23	55.42	11.92		
Henderson and Pabis	58.35	98.76	99.64		
Logarithmic	65.27	99.24	99.71		
Logantinine	03.27	33.24	33.1 L		

Table 3. Coefficients of determination (R^2), mean relative errors (P) and mean estimated errors (SE) for the models analyzed during drying of the washed coffee under various temperature conditions and relative humidity of 40, 50 and 60%

UR = 60% 60 °C 23 ⁰C 50 °C Mathematical Models $R^{2}(\%)$ 70.85 Two Terms 98.76 99.64 Two exponential terms 57.38 99.32 99.67 Wang and Singh 69.03 99.39 99.00 Henderson and Pabis Modified 98.76 74.37 99.64 Midilli 67.08 99.45 99.77 Diffusion approximation 65.36 99.34 99.69 P (%) 25.40 2.75 Exponential 1.65 Page 0.09 7.87 13.12 Page Modified 74.32 7.87 13.12 Thompson 30.79 73.53 89.21 Henderson and Pabis 14.63 4.57 7.62 Logarithmic 3.51 0.23 0.39 Two Terms 4.57 7.62 5.41 Two exponential terms 17.35 7.93 13.22 Wang and Singh 53.79 54.76 91.27 Henderson and Pabis Modified 4.57 7.62 6.01 Midilli 4.75 6.57 10.95 Diffusion approximation 0.14 6.56 10.93 SE (decimal) Exponential 0.1357 0.0509 0.0682 Page 0.1245 0.0391 0.0553 Page Modified 0.2618 0.0391 0.0553 Thompson 0.5359 0.4815 0.6809 Henderson and Pabis 0.1297 0.0510 0.0721 Logarithmic 0.0407 0.0575 0.1248 Two Terms 0.0589 0.1020 0.1287 Two exponential terms 0.1352 0.0385 0.0544 Wang and Singh 0.1195 0.0509 0.0720 Henderson and Pabis Modified 0.1375 0.0721 0.1442 Midilli 0.1350 0.0420 0.0727 Diffusion approximation 0.0405 0.0618 0.1310 Distribution of residue Exponential А А А Page A А А Page Modified Т A А Thompson Т Т Т Henderson and Pabis А A Α Logarithmic A Α Α Two Terms Α Α Α Two exponential terms A Α Α Wang and Singh А А А Henderson and Pabis Modified А А А A Midilli А А **Diffusion approximation** A А А

Table 3. Coefficients of determination (R^2), mean relative errors (P) and mean estimated errors (SE) for the models analyzed during drying of the washed coffee under various temperature conditions and relative humidity of 40, 50 and 60%


Página | 2414

A – aleatory distribution

Fonte: Authors elaboration (2014)

Figure 5 shows the values of the effective diffusion coefficient for the pulped coffee beans during different drying conditions. It appears that during the drying the effective diffusion coefficient increased significantly (p<0.05), with the rise of temperature and increase in relative humidity. ALMEIDA et al. (2009) found that during the drying of adzuki effective diffusion coefficients had magnitudes between 0.51×10^{-10} and 2.23×10^{-10} m² s⁻¹ for the temperature range from 30 °C to 70 °C. Their dependence on the temperature of the drying air is described by the Arrhenius equation as shown in Figure 6.

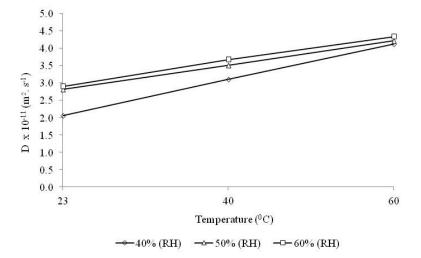
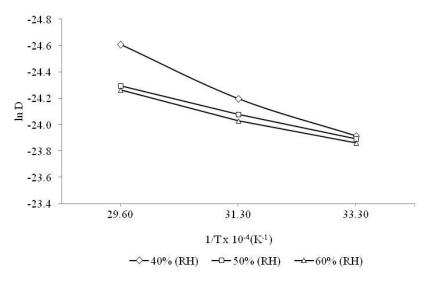



Figure 6 - Representation Arrhenius relationship for the effective diffusivity and air temperature drying of natural coffee.

Fonte: Authors elaboration (2014)

The almost linear fit was obtained indicates that uniform variation of diffusivity with temperature, the value being the variation of diffusivity coefficient obtained at 60 °C, slightly higher than the temperatures of 23 °C and 40 °C, this may be explained due to the molecular vibration of water, because, according GONELI et al. (2011), the diffusion coefficient of variation effective occurs with increasing temperature, which increases the molecular vibration of water molecules and contributes to a faster diffusion. It can be said, therefore, that there was a greater diffusion at a temperature of 60°C. It is observed that the values of Ln (D) as a function of the inverse absolute temperature (1/Ta) show similar behavior to the ranges of temperature 23 °C to 40 °C and 40 °C to 60 °C. Therefore, it can be inferred that there was no interference of external conditions or drying temperatures.

CONCLUSIONS

The different conditions of the ambient air significantly influenced the processes of the drying pulped coffee. The water content of the hygroscopic equilibrium of pulped coffee is directly proportional to the water activity and relative humidity, decreasing with increasing temperature, for the same value of equilibrium relative humidity. The Oswin model was best represented with the hygroscopicity of the pulped coffee, while the Midilli model shows the best fit to describe the drying curves of the washed coffee. The effective diffusion coefficient increases with increasing temperature of the drying air and reducing relative humidity as described by the Arrhenius equation.

ACKNOWLEDGEMENTS

The authors would like to thank the CAPES and CNPq Foundations, the Federal University of Mato Grosso do Sul and Department of the Agricultural Engineering and Federal University of Viçosa, Brazil, for its financial support.

Modelagem matemática da secagem do café despolpado em diferentes condições do ar

ABSTRACT

O objetivo do estudo foi descrever a cinética de secagem do café despolpado (Coffea arabica L.) e avaliar o melhor modelo matemático para ajuste dos dados experimentais de secagem, realizada com diferentes umidades relativas do ar (40, 50 e 60 %) e temperaturas (23, 40 e 60 °C). Os frutos de cafés foram padronizadas na lavagem, separação e seleção manual, dos cafés verdes, passa cana, verde e boia. Em seguida, cerca de 150L de café cereja foi despolpado e levado diretamente para o terreiro. A secagem do café despolpado foi completada em um secador mecânico e no terreiro. Os resultados obtidos mostraram que as diferentes condições do ar ambiente influenciou significativamente nos processos de secagem do café despolpado. O teor de água de equilíbrio higroscópico do café despolpado é proporcional à atividade de água e a umidade relativa, diminuindo com o aumento da temperatura, para o mesmo valor de umidade de equilíbrio higroscópico. O modelo Oswin foi o que melhor representou a higroscopicidade do café despolpado, enquanto o modelo Midilli apresentou o melhor ajuste das curvas de secagem do café. O coeficiente de difusão eficaz aumentou com o aumento da temperatura do ar de secagem e redução da umidade relativa, sendo descrito pela equação de Arrhenius.

KEYWORDS: Coffea arabica L. Secagem. Modelagem Matemática. Café Despolpado.

Página | 2417

R. bras. Tecnol. Agroindustr., Ponta Grossa, v. 11, n. 2: p. 2397-2419, jul./dez. 2017.

REFERÊNCIAS

ALMEIDA, Dieimisson Paulo et al. Cinética de secagem do feijão adzuki (*Vigna angularis*). **Global Science and Technology**, v. 2, n. 1, 2009.

BORÉM, Flávio Meira et al. Qualidade do café natural e despolpado após secagem em terreiro e com altas temperaturas. **Ciência e Agrotecnologia**, p. 1609-1615, 2008.

BRASIL. Ministério da Agricultura e Reforma Agrária. Secretaria Nacional de defesa Agropecuária. Regras para análise de sementes. Secretaria Nacional de Defesa Agropecuária. Brasília: MAPA/ACS, 2009, 395p.

CORADI, Paulo Carteri; BORÉM, Flávio Meira; REINATO, Carlos Henrique. Coffee cherries drying process and the influence of environment relative humidity in the mathematical modeling, moisture content, and enthalpy of vaporization. **Energia na Agricultura**, v. 29, n. 2, p. 148-157, 2014.

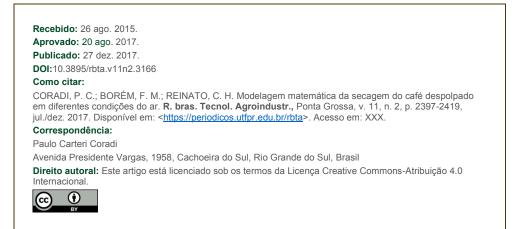
DUARTE GONELI, André Luís et al. Contração volumétrica e forma dos frutos de mamona durante a secagem. **Acta Scientiarum. Agronomy**, v. 33, n. 1, 2011.

MADAMBA, Ponciano S.; DRISCOLL, Robert H.; BUCKLE, Ken A. The thin-layer drying characteristics of garlic slices. **Journal of food engineering**, v. 29, n. 1, p. 75-97, 1996. <u>https://doi.org/10.1016/0260-8774(95)00062-3</u>

MOHAPATRA, Debabandya; RAO, P. Srinivasa. A thin layer drying model of parboiled wheat. **Journal of food engineering**, v. 66, n. 4, p. 513-518, 2005. <u>https://doi.org/10.1016/j.jfoodeng.2004.04.023</u>

PENA, R. da S.; MENDONÇA, N. B.; ALMEIDA, MDC de. Comportamento higroscópico do açaí em pó. **Revista Brasileira de Produtos Agroindustriais**, v. 12, p. 153-161, 2010. <u>https://doi.org/10.15871/1517-8595/rbpa.v12n2p153-161</u>

REIS, Renata C. et al. Modelagem matemática da secagem da pimenta Cumari do Pará. **Revista Brasileira de Engenharia Agrícola e Ambiental**, v. 15, n. 4, p. 347-353, 2011.


RESENDE, Osvaldo et al. Modelagem matemática para a secagem de clones de café (*Coffea canephora* Pierre) em terreiro de concreto. **Acta Scientiarum. Agronomy**, v. 31, n. 2, 2009.

SAATH, Reni et al. Microscopia Eletrônica de Varredura do Endosperma de Café (*Coffea arabica* L.) durante o processo de secagem. **Ciência e Agrotecnologia**, p. 196-203, 2010.

SOUSA, Kelly Aparecida de et al. Cinética de secagem do nabo forrageiro (*Raphanus sativus* L.). **Revista Ciência Agronômica**, v. 42, n. 4, 2011.

SOUSA, Kelly A.; RESENDE, Osvaldo; COSTA, Lílian M. Isotermas de dessorção das sementes de nabo forrageiro obtidas pelos métodos dinâmico e estático. **Revista Brasileira de Engenharia Agricola e Ambiental-Agriambi**, v. 17, n. 2, 2013.

