Avaliação da aplicação de técnicas geodésicas no monitoramento de estruturas civis

Evaluation of the application of geodetic techniques for monitoring civil structures

Ricardo Vilar Neves¹ Pedro Luis Faggion¹ Carlos Aurélio Nadal¹ Luis Augusto Koenig Veiga¹

¹ Departamento de Geomática, Universidade Federal do Paraná - UFPR, Curso de Pós-Graduação em Ciências Geodésicas - CPCG. Avenida Coronel Francisco Heráclito dos Santos, 210 Centro Politécnico - Jardim das Américas Caixa Postal 19001, 81.531-990 Curitiba, Paraná, Brasil. ricvilar@yahoo.com.br, faggion@ufpr.br, cnadal@ufpr.br, kngveiga@ufpr.br

RESUMO - O presente trabalho apresenta um estudo sobre monitoramento de estruturas com finalidade de determinar se existem deslocamentos de pontos localizados junto aos blocos que formam a barragem da Usina Hidroelétrica de Salto Caxias, localizada no município de Capitão Leônidas Marques, Estado do Paraná. Para o monitoramento foram instalados equipamentos sobre pilares que possuem sistema de centragem forçada engastados na rocha à jusante da barragem e determinadas às coordenadas dos alvos implantados junto a três fissuras (bloco 5, bloco 8 e bloco 11). Foram aplicados testes estatísticos para avaliar os resultados obtidos e para verificar se as variações das coordenadas são significativas. Pode-se concluir baseando-se nos testes aplicados e nos resultados obtidos que não houve deslocamentos significativos ao longo do tempo nos blocos que formam a barragem.

Palavras-chave - barragem, sistema de centragem forçada, levantamento geodésico, análise de movimentos.

ABSTRACT – The present work shows a study about the monitoring of structures with the finality of determining if there are movements of points on the blocks that form the Dam of Salto Caxias Power Plant, located nearby Capitão Leônidas Marques city, Paraná state. Were used for monitoring pillars that have forced centering system set: the rock below the dam for the installation of the equipment, it was determined the coordinates of the targets planted close to three cracks (block 5, block 8 and block 11) also it was done statistics tests to evaluate the results and to verify if the variations of the coordinates were significant. It can be conclude based on the applied tests and results obtained that there weren't significant movements along the time on the blocks that form the Dam.

Keywods - dam, forced centering system, geodesic survey, analysis of movements.

1 INTRODUÇÃO

Atualmente uma das tarefas mais importantes nas Usinas Hidroelétricas é o monitoramento de pontos para determinar mudanças em corpos deformáveis, seja em forma, dimensão ou posição. Estes deslocamentos são detectados, principalmente pelas variações de coordenadas dos pontos observados.

Monitorar uma estrutura, do ponto de vista do posicionamento geodésico, significa determinar e comparar as coordenadas de pontos em duas épocas distintas, e verificar se, dentro de certo nível de confiabilidade (significância), houveram variações nestas coordenadas (SILVEIRA, 2003).

Existem vários métodos para avaliar estes movimentos, sendo que os mais conhecidos são os métodos geodésicos e os estruturais.

No caso em estudo, uma rede de monitoramento foi implantada à jusante da barragem da Usina Hidroelétrica de Salto Caxias com a finalidade de avaliar a estrutura através de métodos geodésicos. Considerando que a barragem de Salto Caxias é uma das maiores do Brasil construída utilizando Concreto Compactado a Rolo (CCR), iniciou-se um projeto de pesquisa e desenvolvimento financiado pela Agencia Nacional de Energia Elétrica (ANNEL) e pela Companhia Paranaense de Energia Elétrica (COPEL) objetivando determinar a estabilidade de pontos engastados nos blocos da barragem utilizando técnicas geodésicas.

Na bibliografia pesquisada sobre redes de monitoramento de estruturas, os procedimentos são divididos em quatro etapas (GRANEMANN, 2005).

A primeira, denominada especificação, requer um conhecimento a priori da grandeza dos movimentos, o qual é também, uma condição para estabelecer quais equipamentos devem ser utilizados.

A segunda etapa, denominada concepção, visa atingir a melhor configuração da rede de controle e dos pontos a serem monitorados.

A terceira etapa, denominada implementação, é a etapa de maior custo, pois envolve técnicas de medição e implantação de sistemas de centragem forçada para a instalação dos instrumentos.

A quarta etapa, denominada análise, é a etapa na qual as observações são calculadas e estatisticamente analisadas visando determinar as reais variações das coordenadas.

2 DESCRIÇÃO DA METODOLOGIA APLICADA NO MONITORAMENTO DAS FISSURAS

Na estrutura da barragem da usina hidroelétrica de Salto Caxias, existem pontos de controle a serem monitorados, pontos estes definidos pela equipe técnica da Companhia Paranaense de Energia Elétrica - COPEL. Trata-se de fissuras da estrutura, à montante e jusante da barragem, que devem ser monitorados de modo a verificar se há ou não movimentação significativa.

A rede externa de monitoramento é utilizada para avaliar a estabilidade da região onde está localizada a barragem e para o monitoramento das fissuras à jusante a partir do pilar P3, conforme a Fig. 1.

Figura 1 – Rede externa de monitoramento. Fonte: Autor.

O monitoramento das fissuras está divido, em jusante e montante.

2.1 Monitoramento das fissuras à jusante

Para monitorar os pontos das fissuras localizados à jusante da barragem é necessário ocupar o pilar P3 e realizar uma visada de ré em P1 da rede externa de monitoramento, posteriormente realiza-se as visadas nos alvos implantados a direita e a esquerda das fissuras medindo-se ângulos verticais, direções horizontais e distâncias inclinadas, conforme a Fig. 2.

Figura 2 – Monitoramento das fissuras à jusante. **Fonte:** Autor.

Foram nomeados os pontos das fissuras à jusante da barragem, onde na fissura 1 (Bloco 5) estão implantados os pontos MGE 09 a MGE 16, na fissura 2 (Bloco 8) estão implantados os pontos MGE 19 a MGE 26 e na fissura 3 (Bloco 11) estão implantados os pontos MGE 29 a MGE 36, conforme a Fig. 3.

MGE 10 🖕	● MGE 09	MGE 19 🖕	● MGE 20	MGE 29 🖕	• MGE 30	(CRISTA)
MGE 11 •	• MGE 12	MGE 21 •	• MGE 22	MGE 31 🛛	• MGE 32	
MGE 13 👲	• MGE 14	MGE 23 🖕	• MGE 24	MGE 33 🖕	● MGE 34	
MGE 15 🖕	• MGE 16	MGE 25 👲	• MGE 26	MGE 35 🖕	• MGE 36	
FISSI (Blo	JRA 1 co 5)	FISS (Blo	URA 2 co 8)	FISS (Bloc	URA 3 :o 11)	

Figura 3 – Fissuras à jusante observadas a partir do pilar P3 **Fonte:** Autor

Visualizam-se em detalhe, na Fig. 4, os alvos localizados na fissura 1 à jusante da barragem.

Figura 4 – Alvos à jusante da barragem. Fonte: Autor.

2.2 Monitoramento das fissuras à montante

Como não é possível monitorar as fissuras a montante a partir dos pilares da rede base à jusante, implantou-se um novo ponto junto a comporta 14 definindo uma rede complementar denominada de rede externa à montante.

Para monitorar os pontos das fissuras localizados à montante, ocupa-se um vértice da rede externa à montante, localizado sobre a comporta C14, denominado de MGE 06 o qual tem suas coordenadas planimétricas diretamente ligadas ao referencial local adotado para a rede externa.

Foram nomeados os pontos das fissuras à montante da barragem, onde na fissura 1 (Bloco 5) estão implantados os pontos MGE 07 e MGE 08, na fissura 2 (Bloco 8) estão implantados os pontos MGE 17 e MGE 18 e na fissura 3 (Bloco 11) estão implantados os pontos MGE 27 e MGE 28, conforme Fig. 5.

Figura 5 – Fissuras à montante observadas a partir da estação MGE 06. **Fonte:** Autor.

A localização do posicionamento dos alvos à montante da barragem, (Fissura 3), sobre a mureta de proteção da pista de rolamento que encontra-se sobre à barragem, pode ser visualizada na Fig. 6.

Figura 6 - Posicionamento dos alvos à montante da barragem. Fonte: Autor.

2.3 Equipamento utilizado para o levantamento das fissuras (Blocos)

O levantamento dos dados relacionados às fissuras foi realizado empregando-se uma estação total Robotizada *Leica* TCRA 1205 (Fig. 7).

Figura 7 - Estação Total *Leica* TCRA 1205. Fonte: Autor.

3 RESULTADOS

Foram realizadas quatro campanhas para o monitoramento das fissuras (campanhas 1, 2, 3 e 4) com o intuito de realizar análises entre épocas distintas para verificar a estabilidade dos blocos, bem como seu comportamento com a variação sazonal. As campanhas 1 e 4 foram realizadas no período da primavera e as campanhas 2 e 3 no período de inverno.

3.1 Fissuras à jusante

Em algumas campanhas não foi possível realizar as observações de todos os pontos, como por exemplo, na campanha 1 alguns pontos da fissura 1 estavam obstruídos por causa da vegetação próxima ao mesmo e outro foi arrancado da sua posição, permanecendo desta forma estes pontos sem informação.

As Tabs. de 1 a 12 apresentam as coordenadas das 3 fissuras (blocos) obtidas nas quatro campanhas realizadas à jusante da usina hidroelétrica de Salto Caxias.

Tabela 1 - Coordenadas da fissura 1 (bloco 5) à jusante -Campanha 1

	FISSURA 1 (BLOCO 5)						
Ponto	X (m)	σ (m)	Y(m)	σ (m)			
MGE10	1335,4023	0,0012	1255,8719	0,0012			
MGE09	1337,6386	0,0018	1255,8409	0,0018			
MGE11	SEM PRI	SMA	SEM PRISMA				
MGE12	1336,5589	0,0006	1257,0692	0,0006			
MGE13	SEM LEIT	ΓURA	SEM LEI	TURA			
MGE14	SEM LEIT	ΓURA	SEM LEI	TURA			
MGE15	SEM LEIT	ΓURA	SEM LEI	TURA			
MGE16	1337,5999	0,0017	1237,2682	0,0016			

Tabela 2 - Coordenadas da fissura 2 (bloco 8) à jusante -Campanha 1

	FISSURA 2 (BLOCO 8)							
Ponto	X(m)	σ (m)	Y(m)	σ (m)				
MGE19	1466,4830	0,0011	1253,7382	0,0023				
MGE20	1469,3029	0,0011	1253,6985	0,0023				
MGE21	1467,7103	0,0010	1254,9298	0,0023				
MGE22	1469,5273	0,0010	1254,9152	0,0022				
MGE23	1467,2854	0,0004	1247,2963	0,0005				
MGE24	1469,0008	0,0003	1247,2763	0,0005				
MGE25	1467,0465	0,0003	1236,9486	0,0005				
MGE26	1468,3374	0,0003	1236,9341	0,0005				

Tabela 3 - Coordenadas da fissura 3 (bloco 11) à jusante - Campanha 1

FISSURA 3 (BLOCO 11)							
Ponto	X(m)	σ (m)	Y(m)	σ (m)			
MGE29	1578,3108	0,0004	1251,9119	0,0011			
MGE30	1579,6242	0,0003	1251,9089	0,0010			
MGE31	1577,9731	0,0003	1253,1375	0,0011			
MGE32	1579,4794	0,0002	1253,1141	0,0011			
MGE33	1577,3451	0,0003	1245,2927	0,0012			
MGE34	1578,6183	0,0004	1245,2726	0,0010			
MGE35	1576,5921	0,0003	1233,5778	0,0009			
MGE36	1577,5393	0,0004	1233,5811	0,0007			

Campanha 2					Campanha 3				
FISSURA 1 (BLOCO 5)						FISS	SURA 3 (BI	LOCO 11)	
Ponto	X(m)	σ (m)	Y(m)	σ (m)	Ponto	X (m)	σ (m)	Y(m)	σ (m)
MGE10	1335,4025	0,0024	1255,8757	0,0024	MGE29	1578,3129	0,0002	1251,9068	0,0007
MGE09	1337,6385	0,0028	1255,8439	0,0029	MGE30	1579,6243	0,0002	1251,9040	0,0007
MGE11	SEM PRI	SMA	SEM PRI	SMA	MGE31	1577,9720	0,0003	1253,1318	0,0010
MGE12	1336,5591	0,0014	1257,0714	0,0015	MGE32	1579,4807	0,0003	1253,1084	0,0006
MGE13	SEM LEF	ΓURA	SEM LEI	ΓURA	MGE33	1577,3458	0,0001	1245,2876	0,0006
MGE14	1336,3887	0,0010	1247,1604	0,0011	MGE34	1578,6184	0,0001	1245,2668	0,0009
MGE15	SEM LEI	ΓURA	SEM LEI	ΓURA	MGE35	1576,5925	0,0001	1233,5723	0,0004
MGE16	1337,6065	0,0011	1237,2723	0,0011	MGE36	1577,5391	0,0002	1233,5754	0,0005

Tabela 4 - Coordenadas da fissura 1 (bloco 5) à jusante -Campanha 2 **Tabela 9 -** Coordenadas da fissura 3 (bloco 11) à jusante -

Tabela 5 - Coordenadas da fissura 2 (bloco 8) à jusante - Campanha 2

Tabela 10 - Coordenadas da fissura 1 (bloco 05) à jusante -Campanha 4

FISSURA 2 (BLOCO 8)						FIS	SURA 1 (B	LOCO 5)	
Ponto	X(m)	σ (m)	Y(m)	σ (m)	Ponto	X(m)	σ (m)	Y(m)	σ (m)
MGE19	1466,4752	0,0014	1253,7412	0,0029	MGE10	1335,4057	0,0016	1255,8708	0,0017
MGE20	1469,2971	0,0012	1253,7020	0,0027	MGE09	1337,6431	0,0021	1255,8402	0,0022
MGE21	1467,7025	0,0012	1254,9303	0,0025	MGE11	SEM PRI	SMA	SEM PRISM	A
MGE22	1469,5200	0,0012	1254,9167	0,0028	MGE12	1336,5634	0,0008	1257,0667	0,0009
MGE23	1467,2796	0,0005	1247,2965	0,0007	MGE13	1330,1857	0,0006	1247,2771	0,0006
MGE24	1468,9932	0,0004	1247,2766	0,0007	MGE14	1330,1848	0,0008	1247,2760	0,0008
MGE25	1467,0421	0,0004	1236,9488	0,0006	MGE15	SEM PRI	SMA	SEM PRI	SMA
MGE26	1468,3318	0,0004	1236,9343	0,0008	MGE16	SEM PRI	SMA	SEM PRI	SMA

Tabela 6 - Coordenadas da fissura 3 (bloco 11) à jusante -Campanha 2 Tabela 11 - Coordenadas da fissura 2 (bloco 8) à jusante -Campanha 4

FISSURA 3 (BLOCO 11)					FIS	SURA 2 (B	LOCO 8)		
Ponto	X(m)	σ (m)	Y(m)	σ (m)	Ponto	X(m)	σ (m)	Y(m)	σ (m)
MGE29	1578,3139	0,0005	1251,9090	0,0016	MGE19	1466,4810	0,0007	1253,7366	0,0014
MGE30	1579,6265	0,0007	1251,9061	0,0016	MGE20	1469,3002	0,0009	1253,6981	0,0019
MGE31	1577,9742	0,0005	1253,1340	0,0017	MGE21	1467,7073	0,0007	1254,9263	0,0015
MGE32	1579,4825	0,0005	1253,1105	0,0014	MGE22	1469,5239	0,0006	1254,9122	0,0013
MGE33	1577,3492	0,0005	1245,2881	0,0016	MGE23	1467,2817	0,0002	1247,2930	0,0003
MGE34	1578,6205	0,0003	1245,2676	0,0014	MGE24	1468,9973	0,0001	1247,2720	0,0002
MGE35	1576,5953	0,0002	1233,5723	0,0011	MGE25	1467,0432	0,0001	1236,9439	0,0002
MGE36	1577,5396	0,0003	1233,5757	0,0010	MGE26	1468,3332	0,0003	1236,9294	0,0003

Tabela 7 - Coordenadas da fissura 1 (bloco 5) à jusante -Campanha 3

Tabela 12 - Coordenadas da fissura 3 (bloco 11) à jusante -Campanha 4

FISSURA 1 (BLOCO 5)					FISS	SURA 3 (BI	LOCO 11)		
Ponto	X(m)	σ (m)	Y(m)	σ (m)	Ponto	X(m)	σ (m)	Y(m)	σ (m)
MGE10	1335,4021	0,0012	1255,8755	0,0012	MGE29	1578,3132	0,0004	1251,9046	0,0008
MGE09	1337,6402	0,0015	1255,8436	0,0016	MGE30	1579,6265	0,0002	1251,9010	0,0007
MGE11	SEM PRISM.	A	SEM PRISM	A	MGE31	1577,9746	0,0004	1253,1287	0,0017
MGE12	1336,5592	0,0009	1257,0723	0,0009	MGE32	1579,4829	0,0004	1253,1046	0,0006
MGE13	1330,1807	0,0005	1247,2809	0,0010	MGE33	1577,3475	0,0001	1245,2837	0,0006
MGE14	1336,3840	0,0011	1247,1688	0,0011	MGE34	1578,6212	0,0001	1245,2630	0,0006
MGE15	1329,7859	0,0016	1237,4179	0,0015	MGE35	1576,5936	0,0001	1233,5687	0,0004
MGE16	1337,6019	0,0018	1237,2712	0,0017	MGE36	1577,5418	0,0001	1233,5710	0,0004

Tabela 8 - Coordenadas da fissura 2 (bloco 8) à jusante -Campanha 3

FISSURA 2 (BLOCO 8)						
Ponto	X (m)	σ (m)	Y(m)	σ (m)		
MGE19	1466,4842	0,0007	1253,7425	0,0016		
MGE20	1469,3041	0,0006	1253,7031	0,0013		
MGE21	1467,7109	0,0007	1254,9322	0,0014		
MGE22	1469,5268	0,0006	1254,9180	0,0014		
MGE23	1467,2872	0,0002	1247,3001	0,0003		
MGE24	1469,0020	0,0003	1247,2789	0,0003		
MGE25	1467,0488	0,0002	1236,9519	0,0003		
MGE26	1468,3395	0,0002	1236,9369	0,0003		

3.1.1 Interpretação dos deslocamentos à jusante

A análise das discrepâncias das coordenadas dos pontos das fissuras à jusante foi realizada com base na comparação entre as campanhas, sendo estas comparações realizadas duas a duas (entre as campanhas 1 e 4 período de primavera e as campanhas 2 e 3 – período de inverno). Este critério foi adotado com o intuito de analisar também, as coordenadas em épocas com variações sazonais.

Na Tab. 13 são apresentadas as variação das coordenadas das fissuras à jusante entre as campanhas 1 e 4.

 Tabela 13 - Variação das coordenadas das fissuras à jusante –

 Campanhas 1 e 4

	Fissura1	
Ponto	X(m)	Y(m)
MGE10	-0,0034	0,0011
MGE09	-0,0045	0,0007
MGE11	SEM P	RISMA
MGE12	-0,0045	0,0025
MGE13	SEM LE	EITURA
MGE14	SEM LE	EITURA
MGE15	SEM LE	EITURA
MGE16	SEM LI	EITURA
	Fissura2	
Ponto	X(m)	Y(m)
MGE19	0,0020	0,0016
MGE20	0,0027	0,0004
MGE21	0,0030	0,0035
MGE22	0,0034	0,0030
MGE23	0,0037	0,0033
MGE24	0,0035	0,0043
MGE25	0,0033	0,0047
MGE26	0,0042	0,0047
	Fissura3	
Ponto	X(m)	Y(m)
MGE29	-0,0024	0,0073
MGE30	-0,0023	0,0079
MGE31	-0,0015	0,0088
MGE32	-0,0035	0,0095
MGE33	-0,0024	0,0090
MGE34	-0,0029	0,0096
MGE35	-0,0015	0,0091
MGE36	-0,0025	0,0101

Nas Figs. 8, 9 e 10 são representados os gráficos de variação das coordenadas das fissuras 1, 2 e 3 à jusante pertinentes à Tab. 13.

Figura 8 - Variação das coordenadas da fissura 1 à jusante. Fonte: Autor.

Figura 9 - Variação das coordenadas da fissura 2 à jusante. Fonte: Autor.

Figura 10 - Variação das coordenadas da fissura 3 à jusante. Fonte: Autor.

Na Tab. 14 são apresentadas as variação das coordenadas das fissuras à jusante entre as campanhas 2 e 3.

Tabela 14 - Variação das coordenadas das fissuras à jusante -Campanhas 2 e 3

	Fissura1	
Ponto	X(m)	Y(m)
MGE10	-0,0017	0,0003
MGE09	0,0004	0,0002
MGE11	SEM P	RISMA
MGE12	-0,0001	-0,0009
MGE13	SEM L	EITURA
MGE14	0,0047	-0,0084
MGE15	SEM L	EITURA
MGE16	0,0046	0,0011
	Fissura2	
Ponto	X(m)	Y(m)
MGE19	-0,0070	-0,0011
MGE20	-0,0090	-0,0013
MGE21	-0,0084	-0,0019
MGE22	-0,0068	-0,0013
MGE23	-0,0076	-0,0036
MGE24	-0,0088	-0,0023
MGE25	-0,0067	-0,0031
MGE26	-0,0077	-0,0026
	Fissura3	
Ponto	X(m)	Y(m)
MGE29	0,0022	0,0021
MGE30	0,0010	0,0022
MGE31	0,0022	0,0022
MGE32	0,0018	0,0021
MGE33	0,0034	0,0005
MGE34	0,0021	0,0008
MGE35	0,0028	0,0000
MGE36	0,0005	0,0003

Nas Figs. 11, 12 e 13 são representados os gráficos de variação das coordenadas das fissuras 1, 2 e 3 à jusante pertinentes à Tab. 14.

Figura 11 - Variação das coordenadas da fissura 1 à jusante. Fonte: Autor.

Figura 12 - Variação das coordenadas da fissura 2 à jusante. Fonte: Autor.

Figura 13 - Variação das coordenadas da fissura 3 à jusante. Fonte: Autor.

3.1.2 Teste estatístico e interpretações dos deslocamentos à jusante

Obtidas as coordenadas de todas as fissuras (Blocos 5, Bloco 8 e Bloco 11), calcularam-se as diferenças entre duas épocas, (entre as campanhas 1 e 4 período de primavera e entre as campanhas 2 e 3 – período de inverno). Para verificar se estas variações são significativas aplicou-se o teste estatístico de *Snedecor* com distribuição F, a um nível de significância de 5%. Neste teste a hipótese básica é dada pela Eq.1.

$$H_0: \tilde{d} = \begin{bmatrix} dx \\ dy \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(1)

onde não existe diferença significativa entre as componentes. Uma hipótese alternativa é dada pela Eq.2.

$$H_0: \tilde{d} = \begin{bmatrix} dx \\ dy \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(2)

onde existe diferença significativa entre as componentes.

Na hipótese básica e alternativa tem-se:

 d_x = vetor da componente x, resultante da diferença entre duas épocas;

 d_y = vetor da componente y, resultante da diferença entre duas épocas dada pela Eq.3.

$$\tilde{d} = \begin{bmatrix} dx \\ dy \end{bmatrix}$$
(3)

O vetor médio das diferenças entre componentes é dada pela Eq.4.

$$\tilde{d} = n^{-1} \cdot \sum_{j=1}^{n} \tilde{d}_{j} \tag{4}$$

$$S_d = n^{-1} \sum_{j=1}^n \tilde{d}_j \, (\tilde{d}_j - d) (\tilde{d}_j - d)^T \tag{5}$$

Estatística do teste:

$$VC = n. (d - \widetilde{d})^T. (S_d)^{-1}. (d_j - \widetilde{d})$$
(6)

Como:

$$VT = (p(n-1)/n - p).F(\alpha)_{p,n-p}$$
(7)

Sendo:

$$n =$$
número de pontos;

p = número de variáveis.

Rejeita-se H_{0,} se:

$$VC > (p(n-1)/n - p).F(\alpha)_{p,n-p}$$
 (8)

Com base nas hipóteses acima, a seguir são apresentados os resultados dos cálculos do teste estatístico entre as duas comparações à jusante:

Resultado entre as Campanhas 1 e 2

Os resultados foram:

- Valor Teórico (VT), conforme Eq.7.

$$p(n-1)/(n-p).F(\alpha)_{p,n-p} =$$

$$= (2(8-1)/(8-2) \cdot F(0,05)_{2,6} = 3,8$$

- Valor Calculado (VC), conforme Eq.8.

$$VC = n. (d - \widetilde{d})^T. (S_d)^{-1}. (d_j - \widetilde{d}) = 2,3$$

Logo:

$$VC = 2,3 < VT = 3,8$$

E assim sendo, aceita-se a hipótese básica H_0 a um nível de significância de 5%, cujo resultado indica que não existe diferença significativa entre os valores obtidos.

Resultado entre as Campanhas 3 e 4

Os resultados foram:

- Valor Teórico (VT), conforme Eq.7.

$$p(n-1)/(n-p).F(\alpha)_{p,n-p} =$$

 $= (2(8-1)/(8-2) \cdot F(0,05)_{2,6} = 3,8$

Valor Calculado (VC), conforme Eq.8.

$$VC = n. (d - \tilde{d})^{T}. (S_d)^{-1}. (d_i - \tilde{d}) = 2,0$$

Logo:

$$VC = 2,0 < VT = 3,8$$

E assim sendo, aceita-se a hipótese básica H_0 a um nível de significância de 5%, cujo resultado indica que não existe diferença significativa entre os valores obtidos.

3.2 Fissuras à montante

Nas Tabs. 15, 16 e 17 são apresentadas as coordenadas dos pontos das fissuras (blocos), obtidas nas quatro campanhas realizadas à montante da usina hidroelétrica de Salto Caxias.

Tabela 15 - Coordenadas da fissura 1 (Bloco 5) à montante -Todas as épocas

FISSURA 1 (BLOCO 5)							
Ponto	X (m)	σ (m)	Y(m)	σ (m)			
	C	AMPANHA	1				
MGE07	1337,8153	0,0002	1264,5621	0,0002			
MGE08	1338,5323	0,0002	1264,5574	0,0002			
	C.	AMPANHA	2				
MGE07	1337,8158	0,0002	1264,5625	0,0001			
MGE08	1338,5330	0,0001	1264,5581	0,0001			
	С	AMPANHA	3				
MGE07	1337,8147	0,0001	1264,5617	0,0001			
MGE08	1338,5310	0,0001	1264,5569	0,0001			
CAMPANHA 4							
MGE07	1337,8151	0,0001	1264,5615	0,0001			
MGE08	1338,5313	0,0001	1264,5568	0,0001			

Tabela 16 - Coordenadas da fissura 2 (Bloco 8) à montante -Todas as épocas

	FL	SSURA 2 (BI	LOCO 8)	
Ponto	X(m)	σ (m)	Y(m)	σ (m)
	CA	AMPANHA I	!	
MGE17	1467,3852	0,0023	1262,4235	0,0005
MGE18	1467,7265	0,0019	1262,4099	0,0003
	CA	AMPANHA 2	?	
MGE17	1467,3858	0,0008	1262,4294	0,0006
MGE18	1467,7287	0,0018	1262,4123	0,0002
	CA	AMPANHA 3	}	
MGE17	1467,3853	0,0007	1262,4242	0,0002
MGE18	1467,7261	0,0006	1262,4111	0,0001
	CA	AMPANHA 4	4	
MGE17	1467,3883	0,0008	1262,4258	0,0003
MGE18	1467,7270	0,0009	1262,4112	0,0002

Tabela 17 - Coordenadas da fissura 3 (Bloco 11) à montante -Todas as épocas

100003 03 0	poeus				
FISSURA 1 (BLOCO 5)					
Ponto	X(m)	σ (m)	Y(m)	σ(m)	
	CA	AMPANHA 1	1		
MGE27	1579,1570	0,0001	1260,6128	0,0019	
MGE28	1579,5971	0,0034	1260,6048	0,0003	
	CA	AMPANHA 2	2		
MGE27	1579,1594	0,0024	1260,6179	0,0008	
MGE28	1579,6002	0,0025	1260,6074	0,0002	
	CA	AMPANHA 3	}		
MGE27	1579,1571	0,0014	1260,6129	0,0002	
MGE28	1579,5977	0,0012	1260,6038	0,0001	
	CA	AMPANHA 4	f i i i i i i i i i i i i i i i i i i i		
MGE27	1579,1566	0,0014	1260,6147	0,0002	
MGE28	1579,5978	0,0013	1260,6045	0,0004	

3.2.1 Interpretação dos deslocamentos à montante

A variação das coordenadas dos pontos das fissuras à montante também foi analisado realizando a comparação entre dados de levantamentos de duas épocas distintas. A primeira análise foi realizada entre as campanhas 1 e 4 e uma segunda análise entre as campanhas 2 e 3, objetivando desta maneira simular épocas com variações sazonais.

Na Tab. 18 são apresentas as variações das coordenadas das fissuras à montante entre as campanhas 1 e 4.

 $\ensuremath{\textbf{Tabela 18}}$ - Variação das coordenadas das fissuras à montante - Campanha 1 e 4

Fissura 1		
Ponto	X(m)	Y(m)
MGE07	0,0002	0,0006
MGE08	0,0010	0,0006
Fissura 2		
Ponto	X(m)	Y(m)
MGE17	-0,0031	-0,0023
MGE18	-0,0005	-0,0013
	Fissura 3	
Ponto	X(m)	Y(m)
MGE27	0,0004	-0,0019
MGE28	-0,0007	0,0003

Nas Figs. 14, 15 e 16 são representados os gráficos de variação das coordenadas das fissuras 1, 2 e 3 à montante pertinentes à Tab. 18.

Figura 14 - Variação das coordenadas da fissura 1 à montante. Fonte: Autor.

Figura 15 - Variação das coordenadas da fissura 2 à montante. Fonte: Autor.

Figura 16 - Variação das coordenadas da fissura 3 à montante Fonte: Autor.

Na Tab. 19 são apresentas as variações das coordenadas das fissuras à montante, porém agora entre as campanhas 2 e 3 na Tab.19.

 Tabela 19 - Variação das coordenadas das fissuras à montante

 Campanhas 2 e 3

Fissura 1				
Ponto	X(m)	Y(m)		
MGE07	0,0002	0,0006		
MGE08	0,0010	0,0006		
Fissura 2				
Ponto	X(m)	Y(m)		
MGE17	-0,0031	-0,0023		
MGE18	-0,0005	-0,0013		
Fissura 3				
Ponto	X(m)	Y(m)		
MGE27	0,0004	-0,0019		
MGE28	-0,0007	0,0003		

As Figs. 17, 18 e 19 representam os gráficos de variação das coordenadas das fissuras 1, 2 e 3 à montante pertinentes à Tab. 19.

Figura 17 - Variação das coordenadas da fissura 1 à montante. Fonte: Autor.

Figura 18 - Variação das coordenadas da fissura 2 à montante. Fonte: Autor.

Figura 19 - Variação das coordenadas da fissura 3 à montante. Fonte: Autor.

3.2.2 Teste estatístico e interpretações dos deslocamentos à montante

Da mesma maneira que à jusante calcularam-se as diferenças entre as campanhas para à montante e foram aplicados os testes estatísticos para a validação destes dados.

A seguir são apresentados os resultados entre as duas comparações à montante.

✓ Resultados entre as Campanha 1 e 4

Os resultados obtidos foram:

- Valor Teórico (VT), conforme Eq.7.

$$p(n-1)/(n-p).F(\alpha)_{p,n-p} =$$

$$= (2(2-1)/(2-2).F(0,05)_{2,2} = 4,6$$

- Valor Calculado (VC), conforme Eq.8.

$$VC = n. (d - \widetilde{d})^T. (S_d)^{-1}. (d_j - \widetilde{d}) = 3.9$$

Logo:

$$VC = 3.9 < VT = 4.6$$

E assim sendo, aceita-se a hipótese básica H_0 a um nível de significância de 5%, cujo resultado indica que

não existe diferença significativa entre os valores encontrados.

✓ Resultados entre as Campanha 2 e 3

Os resultados obtidos foram:

- Valor Teórico (VT), conforme Eq.7.
- p(n-1)/(n-p). $F(\alpha)_{p,n-p} =$

$$= (2(2-1)/(2-2).F(0,05)_{2,2} = 4,6$$

- Valor Calculado (VC), conforme Eq.8.

$$VC = n.(d - \tilde{d})^{T}.(S_d)^{-1}.(d_j - \tilde{d}) = 3.6$$

Logo:

$$VC = 3.6 < VT = 4.6$$

E assim sendo, aceita-se a hipótese básica H_0 a um nível de significância de 5%, cujo resultado indica que não existe diferença significativa entre os valores encontrados.

4 CONCLUSÕES

Os resultados obtidos utilizando os conceitos estatísticos serviram para demonstrar que as coordenadas das fissuras (Bloco 5, Bloco 8 e Bloco 11) avaliadas comparando duas campanhas (Campanha 1 e 4 e Campanha 2 e 3) não variam ao longo do tempo a um nível de significância de 5%, podendo ser consideradas estáveis.

Ficou comprovado que com a automação das técnicas geodésicas para a coleta, transferência e análise dos resultados, o monitoramento geodésico de estruturas torna-se uma ferramenta importante para realizar a avaliação de comportamentos de estruturas civis.

AGRADECIMENTOS

Os autores agradecem a Agencia Nacional de Energia Elétrica (ANNEL), a Companhia Paranaense de Energia Elétrica (COPEL) pelo financiamento do projeto de pesquisa com cadastro BANPESQ: 200.301.308-8. Este trabalho é parte constituinte de dissertação de mestrado vinculado à Universidade Federal do Paraná (UFPR).

REFERÊNCIAS

GRANEMANN, D. C. Estabelecimento de uma Rede Geodésica para o Monitoramento de Estruturas: Estudo de Caso na Usina Hidrelétrica de Salto Caxias. Dissertação Apresentada ao Curso de PósGraduação em Ciências Geodésicas, 112p, UFPR, Curitiba, 2005.

SILVEIRA, J. F. A. Instrumentação e Comportamento de Fundação de Barragens de Concreto. São Paulo: Oficina de Textos, 2003. 320p.