

Detecção de rastros de dust devils em Thaumasia-Marte

RESUMO

Luciene Toledo e Almeida

luhhtalmeida@gmail.com orcid.org/0000-0002-6676-2177 Instituto Federal de Educação, Ciência e Tecnologia de MT (IFMT), Cuiabá, Mato Grosso, Brasil.

Thiago Statella

thiago.statella@ifmt.edu.gov.br orcid.org/0000-0002-8656-9147 Instituto Federal de Educação, Ciência e Tecnologia de MT (IFMT), Cuiabá, Mato Grosso, Brasil. Este trabalho utiliza um método de processamento digital de imagens para detecção de feições eólicas na superfície de Marte. Essas feições são rastros de vórtices convectivos recorrentes em Marte, estes, por sua vez, são formados por correntes de ar quente instáveis, próximas à superfície, provocadas por insolação. A área de estudo escolhida foi Thaumasia. O método aplicado baseia-se na teoria da Morfologia Matemática, sendo os rastros obtidos de maneira automática via processamento digital de imagens e binarização automática pelo método de otsu restrito. Os rastros foram detectados automaticamente nas imagens orbitais, o que permitiu calcular características importantes dos vórtices como: largura média e máxima, área de recobrimento, direção preponderante entre outros. Os resultados podem ser usados para auxiliar na compreensão do fenômeno que ocorre no ambiente marciano, contribuindo para o entendimento de como os vórtices de dust devils podem influenciar nas variações locais climáticas do planeta e se faz importante por ser o processo geológico em maior atividade no planeta.

PALAVRAS-CHAVE: Marte. Vórtices Convectivos. Processamento Digital de Imagens

INTRODUÇÃO

Este trabalho utiliza um método de processamento digital de imagens para detecção de feições eólicas na superfície de Marte. Essas feições são rastros de vórtices convectivos conhecidos como Dust Devils. Dust devils são formados por correntes de ar quente instáveis, próximas à superfície, provocadas por insolação. Eles têm sido estudados na Terra por mais de um século (BADDELEY, 1860) e foram observados pela primeira vez em Marte nas imagens orbitais obtidas pelo programa *Viking* (1975) (THOMAS e GIERASCH, 1985).

A atividade eólica é o processo geológico mais dinâmico em áreas não polares em Marte (BRIDGES, 2016). Desta forma a atmosfera está em constante movimento, onde ocorrem diversas tempestades eólicas que causam entre seus fenômenos os Dust Devils. Assim, de acordo com Amarante et al. (2001) o vento tem sua origem na associação entre a energia solar e a rotação planetária.

Ao se deslocarem, os vórtices removem a camada fina de poeira e areia que recobre a superfície, alterando a reflectância local, e dando origem a rastros, normalmente mais escuros que a região vizinha. Alguns rastros de dust devils chegam a medir dezenas de metros em largura por dezenas de quilômetros em comprimento. Rastros escuros são formados quando o vórtice remove a camada de poeira ou areia formada por grãos mais finos que recobre o terreno subjacente. Rastros claros se formam quando o dust devil desintegra agregados de poeira depositados na superfície, os quais são mais rugosos e têm baixa refletância, produzindo um material particulado mais fino e com alta refletância (REISS et al., 2011).

A detecção dos rastros de dust devils foi obtida de maneira automática via processamento digital de imagens. Conforme Statella (2012) o método abrange a aplicação de filtragem preliminar, realce de feições e análise granulométrica dos rastros. Os resultados contribuirão para futuros estudos em áreas como Geologia, Climatologia e Cartografia do planeta Marte.

ÁREA DE ESTUDO

Para fins de mapeamento sistemático, Marte é dividido em 30 quadrângulos, cada qual dando origem a uma carta do mapeamento sistemático. Neste trabalho será estudada a região de Thaumasia, localizada no quadrângulo 25, no Hemisfério Sul com área abrangendo de -30° a -65° de latitude sul e de 240° a 300° de longitude oeste, conforme mostra o Mapa exibido na Figura 1, formado por imagens Mars Orbiter Câmera (MOC) Grande Angular de Marte, do satélite Mars Global Surveyor (MGS).

Figura 1 – Região estudada: Thaumasia

Fonte: disponível em http://photojournal.jpl.nasa. gov/catalog/PIA03467.

Foram pesquisadas 832 imagens e encontrados rastros visíveis e detectáveis em 267 delas: 117 MOC pancromáticas e 150 High Resolution Image Science Experiment (HiRISE) da banda do vermelho. A escolha por imagens MOC pancromáticas foi feita para que se pudesse aproveitar a alta resolução espacial da câmera de abertura angular pequena. No caso da câmera HiRISE, a escolha ocorreu devido ao grande acervo de imagens capturadas pela câmera e pela alta resolução das imagens registradas que é de 0,25 m ou 0,50 m permitindo ver as imagens em um grande nível de detalhes.

A fim de diminuir o tempo de processamento (especialmente por causa do tamanho das imagens HiRISE) e descartar informação irrelevante (como grandes áreas sem rastros ou qualquer outra feição geomorfológica) as imagens foram recortadas em regiões de interesse e foi criado um banco de dados para armazenar as seguintes informações sobre as cenas: Nome Data de aquisição, Hora, Sensor, Largura, Comprimento, Resolução horizontal (Rh), Razão de aspecto (Ra), Banda, Longitude, Latitude, Longitude solar (Ls), Sistema de projeção e Nome da região.

MÉTODO

O método empregado neste trabalho é o descrito em Statella et al. (2012). Em linhas gerais, o método desenvolvido para detectar automaticamente rastros de dust devils em imagens orbitais é apresentado na Figura 2. Ele se baseia fortemente na teoria da Morfologia Matemática. Aspectos teóricos e práticos a respeito podem ser encontrados em Hendriks (2010), Soille (2004) e Serra (1982). As etapas consistem em: Filtragem, Seleção de candidatos a rastro, Recuperação dos rastros, Detecção dos rastros e Análise.

Fonte: Statella et al. (2012).

A primeira etapa é uma filtragem com abertura e fechamento por área. Na etapa inicial a abertura por área tem o objetivo de atenuar a alta reflectância de dunas, ripples e rochas isoladas, enquanto o fechamento por área atenua pontos escuros causados principalmente por sombras de rochas isoladas. Além disso, ruídos possivelmente presentes nas cenas e causados pelo processo de imageamento são eliminados. O tamanho Λ da área considerado na abertura/fechamento por área varia com a resolução espacial Rh das imagens. Para a abertura foi estabelecida a relação Λ =500/Rh e para o fechamento a área filtrada consiste em Λ /2. O fator 500 foi escolhido empiricamente a partir de experimentos com imagens dos dois sensores.

Na segunda etapa do método um fechamento por caminho é aplicado para selecionar todos os caminhos escuros. A seleção é feita, portanto, de uma maneira indireta já que todos os rastros são filtrados nas direções 0°, 45°, 90° e 135°. O comprimento máximo dos caminhos considerados no fechamento é definido pela dimensão da imagem e obtido por $(m^2+n^2)^{1/2}x^2$ em que *m* e *n* são, respectivamente, o número de colunas e linhas da imagem (embora o fechamento por caminho utilizado seja o restrito, definido por Hendriks (2010), os caminhos ainda são flexíveis o bastante para ziguezaguear um pouco, portanto o maior caminho possível no pior dos casos terá o comprimento do dobro da diagonal da imagem). Na terceira etapa os rastros são recuperados e realçados pelo top-hat. Na etapa seguinte uma binarização automática pelo método de Otsu é aplicada para detectar os rastros. A saída do processo é, portanto, uma imagem binária com rastros em branco.

RESULTADOS

Nas regiões onde ocorrem dust devils, geralmente encontra-se uma imensa quantidade de filamentos escuros, sem largura e comprimentos definidos, conforme mostra a Figura 3A.

Figura 3 – Rastros de Dust Devils na superfície de Marte (A). Etapas do Processamento Digital das Imagens: Filtragem (B), Seleção de candidatos a rastro (C), Recuperação dos rastros (top-hat) (D), Detecção dos rastros (Binarização) (E)

A Figura 3, é um recorte da imagem HiRISE ESP_023478_1160, pertencente à região de estudo Thaumasia, será usado para ilustrar as etapas do método. A cena possui 4.383 pixels de altura e 2.811 pixels de largura, 0,5 m de resolução espacial, foi adquirida em 30/07/2009 às 14h33min (hora local marciana) na longitude solar 59,9° e tem como coordenadas de centro 63,533° S de latitude e 266,892° E de longitude.

Conforme a metodologia apresentada, as imagens foram inicialmente filtradas, para correções de interferências causadas por ruídos e processos por imageamento e assim, melhorar a qualidade das imagens, conforme pode ser verificado na Fig. 3B. Nessa etapa, foram aplicadas as transformações de abertura e fechamento por área com o objetivo de atenuar o brilho nas dunas, ripples e rochas isoladas, e também pontos escuros causados principalmente por sombras de rochas isoladas. O fechamento por caminho ou seleção de candidatos a rastros ocorre na segunda etapa e tem como objetivo segmentar a função de iluminação da cena, conforme mostra a Figura 3C. Na etapa seguinte, conforme demonstram à Figura 3D, os rastros são recuperados pela aplicação da transformação top-hat, que destaca/realça as feições de interesse. A detecção dos rastros ocorre na quarta etapa, Figura 3E, onde ocorre a binarização automática, sendo esta aplicada pelo método Otsu. O objetivo é segmentar os pixels pertencentes aos rastros escuros de dust devils.

O método apresentado foi aplicado nas 265 cenas do banco de imagens. Para demonstração dos resultados, foram selecionadas as imagens apresentadas na Figura 4. São elas: imagens HiRISE ESP_014050_1155C2 (A), ESP_014116_1170C7 (B), PSP_003975_1295C2 (C) e PSP_006732_1190C2 (D); imagens MOC E13-01570 (E) e E13-01754 (F). Informações sobre as referidas imagens são disponibilizadas na Tabela 1. A Figura 5 mostra a detecção dos rastros das imagens da Figura 4. A binarização se mostra eficiente conforme as imagens evidenciaram, o algoritmo obteve bom desempenho mesmo na presença de blocos de rocha e suas sombras projetadas, sendo que, os rastros com bordas suaves e pouco definidos também obtiveram sucesso nas detecções.

	Tabela 1 – Características das imagens apresentadas na Figura 4											
Nº	Nome	Sensor	Data	Resolução (m)	Dimensão (pixels)							
А	ESP_014050_1155C2	Hirise	26/07/2009	0,25	3.049 x 6.510							
В	ESP_014116_1170C7	Hirise	31/07/2009	0,25	5.906 x 3.557							
С	PSP_003975_1295C2	Hirise	02/06/2007	0,25	3.906 x 2.129							
D	PSP_006732_1190C2	Hirise	03/01/2008	0,50	1.938 x 2.811							
Е	E1301570	MOC	04/04/2003	2,89	593 x 489							
F	E1301754	MOC	05/04/2003	2,89	615 x 403							

Figura 4 – Imagens: ESP_014050_1155C2 (A), ESP_014116_1170C7 (B), PSP_003975_1295C2 (C), PSP_006732_1190C2 (D), E1301570 (E) e E1301754 (F), selecionadas aleatoriamente para demonstrar os resultados do método

Figura 5 – Resultado da detecção de rastros mostrados na Figura 4.

A dimensão de área coberta por rastros pode ser adquirida pela contagem de pixels em branco no resultado da detecção conforme a Figura 5. Esta informação poderá ser usada futuramente na estimativa de poeira suspendida pelos vórtices. A Largura Média dos rastros é calculada de acordo com a análise granulométrica das imagens feita por elementos estruturantes, o que proporciona uma noção do diâmetro do vórtice, podendo ser utilizada também para o cálculo da probabilidade de

aparecimento dos mesmos. Os resultados calculados para a cobertura e a largura média dos rastros são apresentados na Tabela 2.

Nº	Nome	Cobertura Rastros (km²)	Largura Média (m)
Α	ESP_014050_1155C2	0,225	11
В	ESP_014116_1170C7	0,207	10
С	PSP_003975_1295C2	0,078	17
D	PSP_006732_1190C2	0,229	44
E	E1301570	0,502	45
F	E1301754	0,159	20

Tabala 2 Informaçãos	de Largura e Cel	portura do ractro	da Eigura E
	ue Largura e Cor	Jentura de rastros	s ua rigui a 5

A Largura Média e Cobertura dos rastros informados na Tab. 2, são elementos empregados também para calcular a quantidade de sedimentos ou detritos disseminados pelos vórtices na atmosfera, vale ressaltar a possibilidade de testar métodos para previsão de ocorrência de dust devils em escala global baseados nas análises das imagens.

Outra característica que foi calculada para as imagens HiRISE foi o contraste entre a reflectância dos rastros e das regiões vizinhas, sendo este dado usado para presunção da espessura da camada de areia que recobre o local. A vizinhança de cada rastro foi definida como tendo largura igual à largura média do rastro. A Fig. 6 ilustra as regiões de vizinhança para rastros em três cenas.

Figura 6 – Imagens PSP_003975_1295C2 (A), PSP_006732_1190C2 (B) e ESP_014050_1155C2 (C) mostrando exemplos de vizinhança do entorno dos rastros

A direção preponderante, ilustrada na Fig. 7, é uma característica importante, ela indica a orientação predominante de deslocamentos dos dust devils, sendo deduzida pelos rastros deixados pelos vórtices, essa direção fornece informações sobre o rumo dos ventos numa determinada região. Os valores reais resultantes do processamento das imagens estão compreendidos no intervalo 0° a 180° e foram classificados em 0°, 45°, 90° ou 135°. A Fig. 7 mostra as rosas de direções das imagens ilustradas na Fig. 5, os círculos nas figuras concêntricas indicam as direções obtida em cada imagem.

As direções preponderantes mostradas, foram automaticamente detectadas durante o processamento digital das imagens, sendo as imagens

HiRISE georreferenciadas no sistema de projeção Equirretangular e as imagens MOC definidas no Sistema Sinusoidal.

Figura 7 – Rosa das direções para cada imagem: ESP_014050_1155C2 (A), ESP_014116_1170C7 (B), PSP_003975_1295C2 (C), PSP_006732_1190C2 (D), E1301570_C5 e E1301754_C4 (E)

A possibilidade de armazenar uma grande quantidade de informações e facilitar o acesso aos dados foi possível com a criação de uma tabela com os principais dados de análise das imagens, assim, é uma ferramenta importante para auxiliar no processo de organização da pesquisa, contribuindo em resumir as informações em dados amostrais.

Esses dados ou imagens adquiridas no processamento digital das imagens e que formaram o banco de dados segue na Tab. 3. A partir desta tabela é possível identificar aspectos individuais e extrair informações quantitativas que sejam de relevância para a análise de cada uma das cenas.

						Cobert		Contraste	Direção
Nome	Data	Hora	Sensor	Lon.	Lat.	Rastro	Lon.	do	Preponde
						s (km²)	Solar	Albedo	rante
ESP_030599_1200C1	04/02/2013	15:12	HIRISE	256,251	-59,718	0,129	258,3	0,009957	180-15
ESP_030915_1290C1	01/03/2013	14:57	HIRISE	268,263	-50,891	0,130	273,8	0,000440	180-30
ESP_032630_1255C1	13/07/2013	14:29	HIRISE	245,663	-54,083	0,549	350,6	0,000360	180-165
ESP_032630_1255C2	13/07/2013	14:29	HIRISE	245,663	-54,083	0,506	350,6	0,000180	180-90
ESP_032630_1255C3	13/07/2013	14:29	HIRISE	245,663	-54,083	0,454	350,6	0,000578	180-165
ESP_032485_1275C1	01/07/2013	14:24	HIRISE	243,646	-52,024	0,371	344,7	0,000723	180-30
ESP_032485_1275C2	01/07/2013	14:24	HIRISE	243,646	-52,024	0,708	344,7	0,000008	180-15
ESP_030916_1250C1	01/03/2013	14:23	HIRISE	240,141	-54,506	0,172	273,8	0,000017	180-15
ESP_030916_1250C2	01/03/2013	14:23	HIRISE	240,141	-54,506	0,151	273,8	0,000240	180-15
ESP_030916_1250C3	01/03/2013	14:23	HIRISE	240,141	-54,506	0,126	273,8	0,000114	180-45
ESP_024375_1270C1	08/09/2011	14:42	HIRISE	255,736	-52,801	0,161	12,3	0,000798	180-165
ESP_024375_1270C2	08/09/2011	14:42	HIRISE	255,736	-52,801	0,281	12,3	0,000199	180-45
ESP_024375_1270C3	08/09/2011	14:42	HIRISE	255,736	-52,801	0,526	12,3	0,000281	180-30
ESP_023188_1200C1	08/07/2011	14:28	HIRISE	262,82	-59,48	0,168	324,4	0,000111	180-30
ESP_023188_1200C2	08/07/2011	14:28	HIRISE	262,82	-59,48	0,180	324,4	0,000315	180-30
ESP_023188_1200C3	08/07/2011	14:28	HIRISE	262,82	-59,48	0,145	324,4	0,000129	180-30
ESP_023188_1200C4	08/07/2011	14:28	HIRISE	262,82	-59,48	0,152	324,4	0,000125	180-45
ESP_023188_1200C5	08/07/2011	14:28	HIRISE	262,82	-59,48	0,167	324,4	0,000291	180-165
ESP_023188_1200C6	08/07/2011	14:28	HIRISE	262,82	-59,48	0,112	324,4	0,000184	180-165
ESP_023188_1200C7	08/07/2011	14:28	HIRISE	262,82	-59,48	0,177	324,4	0,000048	180-45
ESP_023188_1200C8	08/07/2011	14:28	HIRISE	262,82	-59,48	0,138	324,4	0,000156	180-15
ESP_023188_1200C9	08/07/2011	14:28	HIRISE	262,82	-59,48	0,163	324,4	0,000395	180-15
ESP_023188_1200C10	08/07/2011	14:28	HIRISE	262,82	-59,48	0,176	324,4	0,000054	180-15
ESP_023478_1160C1	30/07/2011	14:33	HIRISE	266,892	-63,533	0,216	59,9	0,002621	180-120
ESP_023478_1160C2	30/07/2011	14:33	HIRISE	266,892	-63,533	0,438	59,9	0,000314	180-165

Tabela	3 –	Resultado	dos	processamentos

ESP_023478_1160C3	30/07/2011	14:33	HiRISE	266,892	-63,533	0,362	59,9	0,000244	180-150
ESP 023478 1160C4	30/07/2011	14:33	HIRISE	266,892	-63,533	0,334	59,9	0,003425	180-165
FSP_014288_1315C1	13/08/2009	14.36	HIRISE	242.45	-48 108	0 138	320.8	0.000354	180-15
CD 014200_1015C1	12/08/2000	14.30	LIDICE	242,45	40,100	0,100	220,0	0,000000	100 13
ESP_014288_1315C2	13/08/2009	14:36	HIRISE	242,45	-48,108	0,091	320,8	0,000036	180-135
ESP_014314_1340C1	15/08/2009	14:27	Hirise	250,119	-45,56	0,552	321,9	0,005785	180-30
ESP_012850_1240C1	23/04/2009	15:30	HiRISE	261,227	-55,464	0,212	252,5	0,000062	180-120
ESP 013074 1220C1	11/05/2009	15:14	HIRISE	265,374	-57,942	0,129	263,6	0,000135	180-30
ESP 013074 1220C2	11/05/2009	15:14	HIRISE	265.374	-57,942	0.162	263.6	0.000096	180-75
ESP 013074 1220C3	11/05/2009	15.14	HIDICE	265 374	-57 9/2	0.183	263.6	0.000387	180-30
LSF_013074_1220C3	11/03/2003	13.14	LIDICE	203,374	-57,542	0,103	205,0	0,000387	100-30
ESP_013958_1170C1	19/07/2009	14:43	HIRISE	252,909	-62,599	0,182	305,9	0,000099	180-0
ESP_013958_1170C2	19/07/2009	14:43	Hirise	252,909	-62,599	0,125	305,9	0,001318	180-165
ESP_013958_1170C3	19/07/2009	14:43	HiRISE	252,909	-62,599	0,117	305,9	0,000076	180-30
ESP 013958 1170C4	19/07/2009	14:43	HIRISE	252,909	-62.599	0.146	305.9	0.000063	180-15
FSP 013958 1170C5	22/07/2009	14.42	HIRISE	268 252	-63 204	0 165	305.9	0.000425	180-15
ESP_013050_1170C5	22/07/2000	14.42		200,252	62 204	0,103	205,5	0,000425	100 15
ESF_013936_1170C0	22/07/2009	14.42	HIRISE	206,232	-03,204	0,137	303,9	0,000130	180-15
ESP_013958_11/0C/	22/07/2009	14:42	HIRISE	268,252	-63,204	0,146	305,9	0,000205	180-15
ESP_013958_1170C8	22/07/2009	14:42	Hirise	268,252	-63,204	0,145	305,9	0,000501	180-15
ESP_013958_1170C9	22/07/2009	14:42	HiRISE	268,252	-63,204	0,127	305,9	0,001098	180-30
ESP 013958 1170C10	22/07/2009	14:42	HIRISE	268,252	-63,204	0,133	305,9	0,000016	180-165
FSP 013958 1170C11	22/07/2009	14.42	HIRISE	268 252	-63 204	0.126	305.9	0.000304	180-15
ESP 013058 1170C12	22/07/2009	14.42	HIDISE	268 252	-63 204	0 1 4 5	305.0	0.000708	180-15
LSF_013558_1170C12	22/07/2005	14.42	TIINISE	200,252	-03,204	0,145	305,5	0,000708	100-15
ESP_013958_1170C13	22/07/2009	14:42	HIRISE	268,252	-63,204	0,148	305,9	0,000803	180-15
ESP_013958_1170C14	22/07/2009	14:42	Hirise	268,252	-63,204	0,149	305,9	0,000937	180-15
ESP_013958_1170C15	22/07/2009	14:42	HIRISE	268,252	-63,204	0,123	305,9	0,001762	180-30
ESP 014050 1155C1	26/07/2009	14:42	HIRISE	261,604	-64,083	0,192	310,01	0,000160	180-60
ESP_014050_1155C2	26/07/2009	14.42	HIRISE	261 604	-64 083	0.226	310 01	0 000272	180-60
	26/07/2000	14.42		201,001	64,083	0,220	210.01	0.001821	180 60
ESP_014050_1155C5	26/07/2009	14.42	HIRISE	201,004	-04,085	0,171	310,01	0,001851	180-60
ESP_014050_1155C4	26/07/2009	14:42	HIRISE	261,604	-64,083	0,141	310,01	0,000255	180-90
ESP_014050_1155C5	26/07/2009	14:42	Hirise	261,604	-64,083	0,141	310,01	0,000294	180-90
ESP_014050_1155C6	26/07/2009	14:42	HIRISE	261,604	-64,083	0,214	310,01	0,000627	180-45
ESP 014063 1200C1	27/07/2009	14:38	HIRISE	265,353	-59,559	0,846	310.7	0,000063	180-45
ESD 014062 1200C2	27/07/2000	14.20		265,555		0.766	210.7	0,000040	190 / E
ESF_014003_1200C2	27/07/2005	14.30	LUDICE	205,555	-55,555	0,700	310,7	0,000040	100-45
ESP_014063_1200C3	27/07/2009	14:38	HIRISE	265,353	-59,559	0,787	310,7	0,000010	180-45
ESP_014063_1200C4	27/07/2009	14:38	Hirise	265,353	-59,559	0,615	310,7	0,000138	180-45
ESP_014063_1200C5	27/07/2009	14:38	HiRISE	265,353	-59,559	0,654	310,7	0,000028	180-165
ESP 014063 1200C6	27/07/2009	14:38	HIRISE	265,353	-59,559	0,761	310,7	0,646126	180-30
FSP_014116_1170C1	31/07/2009	14.39	HIRISE	259 275	-62 556	0 167	313 1	0.000089	180-30
CD 014116 1170C1	21/07/2000	14.30	LIDICE	255,275	62,550	0,107	212.1	0,000005	190 45
ESP_014116_11/0C2	31/07/2009	14:59	HIRISE	259,275	-02,550	0,167	515,1	0,000455	180-45
ESP_014116_1170C3	31/07/2009	14:39	HIRISE	259,275	-62,556	0,138	313,1	0,000675	180-0
ESP_014116_1170C4	31/07/2009	14:39	Hirise	259,275	-62,556	0,148	313,1	0,001177	180-165
ESP_014116_1170C5	31/07/2009	14:39	HiRISE	259,275	-62,556	0,126	313,1	0,000456	180-150
ESP 014116 1170C6	31/07/2009	14:39	HIRISE	259.275	-62.556	0.084	313.1	0.001083	180-30
FSP_014116_1170C7	31/07/2009	14.39	HIRISE	259 275	-62 556	0 207	313 1	0.000270	180-15
CD 014116 1170C7	21/07/2000	14.30	LIDICE	255,275	62,550	0,207	212.1	0,0002700	190 15
ESP_014110_11/0C8	31/07/2009	14:59	HIRISE	259,275	-02,550	0,188	515,1	0,000790	180-15
ESP_014116_1170C9	31/07/2009	14:39	HIRISE	259,275	-62,556	0,163	313,1	0,000490	180-15
ESP_014116_1170C10	31/07/2009	14:39	HiRISE	259,275	-62,556	0,128	313,1	0,000246	180-30
ESP 014116 1170C11	31/07/2009	14:39	HiRISE	259,275	-62,556	0,076	313,1	0,000767	180-135
ESP 014116 1170C12	31/07/2009	14.39	HIRISE	259 275	-62 556	0 153	313 1	0,000365	180-30
ESP 01/116 1170C13	31/07/2009	1/-30	HIDISE	250,275	-62 556	0.091	313 1	0.000275	180-45
E3F_014110_1170C13	31/07/2009	14.35	HIRISE	259,275	-02,330	0,091	515,1	0,000273	180-43
ESP_014116_11/0C14	31/07/2009	14:39	HIRISE	259,275	-62,556	0,101	313,1	0,000273	180-30
ESP_014116_1170C15	31/07/2009	14:39	HiRISE	259,275	-62,556	0,122	313,1	0,000628	180-30
ESP_014116_1170C16	31/07/2009	14:39	HIRISE	259,275	-62,556	0,122	313,1	0,000409	180-30
ESP 014116 1170C17	31/07/2009	14:39	HIRISE	259,275	-62,556	0,078	313,1	0,000227	180-45
ESP 014116 1170C18	31/07/2009	14.39	HIRISE	259 275	-62 556	0 153	313 1	0 000244	180-45
ESD 014116 1170C10	21/07/2000	14.35		255,275	62,550	0,155	212.1	0,000244	190 20
E3F_014110_1170C19	31/07/2009	14.35	HIRISE	259,275	-02,330	0,101	515,1	0,000107	180-30
ESP_014116_1170C20	31/07/2009	14:39	HIRISE	259,275	-62,556	0,181	313,1	0,000736	180-30
ESP_014116_1170C21	31/07/2009	14:39	Hirise	259,275	-62,556	0,120	313,1	0,000222	180-0
ESP_014116_1170C22	31/07/2009	14:39	HiRISE	259,275	-62,556	0,077	313,1	0,000254	180-15
ESP 014129 1230C1	01/08/2009	14:34	HIRISE	262.824	-56,788	0.138	313.7	0.004773	180-0
FSP_014129_1230C2	01/08/2009	14.34	HIRISE	262 824	-56 788	0 164	313 7	0.002364	180-45
	27/11/2007	14.04	LUDICE	202,024	50,700	0,104	252.6	0,002304	100 43
PSP_006258_1165C1	2//11/2007	14:41	HIRISE	246,581	-63,244	0,498	353,6	0,000094	180-120
PSP_006258_1165C2	2//11/200/	14:41	HIRISE	246,581	-63,244	0,444	353,6	0,089615	180-120
PSP_006258_1165C3	27/11/2007	14:41	Hirise	246,581	-63,244	0,414	353,6	0,001311	180-135
PSP_006601_1210C1	23/12/2007	14:45	HIRISE	240,049	-58,498	0,166	7	0,000415	180-0
PSP_006601_1210C2	23/12/2007	14:45	HIRISE	240,049	-58,498	0,171	7	0,000146	180-120
PSP 006732 1190C1	03/01/2008	14:45	HIRISE	262,525	-60,505	0,368	11,9	0,001027	180-75
PSP 006732 1190C2	03/01/2008	14.45	HIRISE	262 525	-60 505	0.229	11 9	0.000801	180-75
M12 02750 C1	16/10/2000	00.10	MOC	241 10	44 20	0,225	200 5	0,000001	190.0
W112-02759_C1	10/10/2000	00.15	MOC	241,19	-44,29	0,000	309,5		100-0
M12-02759_C2	16/10/2000	08:13	MOC	241,19	-44,29	0,023	309,5		180-150
M09-05818_C1	16/10/2000	18:09	MOC	252,12	-45,44	0,025	250,54		180-165
M09-05818_C2	16/10/2000	18:09	MOC	252,12	-45,44	0,379	250,54		180-30
M10-01078 C1	16/10/2000	04:28	MOC	243.95	-55.27	0.717	260.33		180-105
M10-01078 C2	16/10/2000	04.28	MOC	243.95	-55 27	0 013	260 33		180-15
M10 01070_02	16/10/2000	09.11	MOC	243,55	53,27	0,010	200,55		100 15
WI12-02/3/_C1	10/10/2000	00.11	NIUC	204,05	-33,33	0,040	309,5		100-10
M10-00288_C1	16/10/2000	00:09	MOC	242,65	-53,93	0,094	255,77		180-0
M10-00288_C2	16/10/2000	00:09	MOC	242,65	-53,93	0,023	255,77		180-60
M12-02133_C1	16/10/2000	03:27	MOC	241,2	-54,74	0,082	305,28		180-105
M11-01995 C1	16/10/2000	02:02	MOC	260,41	-52,37	0,010	282,22		180-105
M11-01995_C2	16/10/2000	02.02	MOC	260.41	-52 37	0,009	282.22		180-45
M11_0100E_C2	16/10/2000	02.02	MOC	200,41	_== 2 2 7	0,003	202,22		190 75
INITT-01332_C2	10/10/2000	02:02	NIUC	200,41	-32,37	0,004	202,22		100-75
M11-01995_C4	16/10/2000	02:02	MOC	260,41	-52,37	0,034	282,22		180-75
M11-01995_C5	16/10/2000	02:02	MOC	260,41	-52,37	0,013	282,22		180-0
M09-05989 C1	16/10/2000	17:27	MOC	269,45	-49,96	0,625	251,16		180-165
M09-05989 C2	16/10/2000	17:27	MOC	269.45	-49.96	0.040	251.16		180-165
M12-01/04 C1	16/10/2000	22.27	MOC	257.84	_55 75	0 0 20	201 50		180-20
N112-01454_C1	10/10/2000	22.27	MOC	201,04	-33,73	0,030	201,23		100-30
WI12-02120_C1	10/10/2000	01:30	WOC	269,82	-50,2	0,031	305,23		180-15
M08-01925_C1	16/10/2000	10:32	MOC	267,95	-53,84	0,246	220,75		180-15
M08-01925_C2	16/10/2000	10:32	MOC	267,95	-53,84	0,699	220,75		180-15
M08-01925_C3	16/10/2000	10:32	MOC	267,95	-53,84	0,153	220,75		180-165
M08-02452 C1	16/10/2000	13:14	MOC	260.71	-56.09	0.197	222.67		180-15
	,			· · · / =	· · , · -		,		

Rev. Bras. Geom., Curitiba, v. 5, n. 1, p. 3-17, jan./mar. 2017.

M08 03453 C3	16/10/2000	12,14	MOC	260 71	FC 00	0.247	222.67		190.0
1008-02432_02	10/10/2000	15.14	WICC	200,71	-30,09	0,347	222,07		100-0
M08-02452_C3	16/10/2000	13:14	MOC	260,71	-56,09	0,206	222,67		180-135
M08-02452 C4	16/10/2000	13:14	MOC	260.71	-56.09	0.155	222.67		180-150
M12 01019 C1	16/10/2000	02-25	MOC	240.40	61.20	0.005	204 07		100 15
W112-01918_C1	10/10/2000	02:25	WIOC	240,49	-04,29	0,085	304,07		190-12
M12-01918_C2	16/10/2000	02:25	MOC	240,49	-64,29	0,197	304,07		180-90
M10-03253 C1	16/10/2000	03:30	MOC	240.77	-64.17	0.571	271.66		180-30
M10 03353 C3	16/10/2000	02.20	MOC	240 77	64.17	0,022	271 66		190.0
WI10-03253_C2	16/10/2000	03:30	NIOC	240,77	-64,17	0,032	271,66		180-0
M10-01991 C1	16/10/2000	19:28	MOC	243,22	-64,03	0,084	263,89		180-0
M12-02131_C1	16/10/2000	03.25	MOC	244 79	-63.95	0.001	305 28		180-120
1112-02131_01	10/10/2000	03.25	WICC	244,75	-03,55	0,001	303,28		100-120
M10-00286_C1	16/10/2000	00:07	MOC	245,16	-63,13	0,008	255,77		180-30
M10-00286 C2	16/10/2000	00:07	MOC	245.16	-63.13	0.718	255.77		180-15
M12 02755_C1	16/10/2000	08.00	MOC	245 52	62.75	0.010	200 5		100 75
W112-02755_C1	16/10/2000	08.09	WIDC	245,52	-02,75	0,010	309,5		180-75
M09-06323_C1	16/10/2000	20:24	MOC	248,5	-62,94	0,056	252,5		180-75
M09-06323 C2	16/10/2000	20.24	MOC	248 5	-62 94	0 253	252.5		180-0
1005 00525_02	10/10/2000	20.24	NIOC	240,5	56.74	0,255	252,5		100 0
M08-03683_C1	16/10/2000	16:33	MOC	257,44	-56,74	0,262	225,88		180-60
M12-01492 C1	16/10/2000	22:25	MOC	260,55	-64,96	0,092	301,59		180-75
M12 01402 C2	16/10/2000	22-2E	MOC	260 55	61.06	0.002	201 50		100 /E
W112-01492_C2	10/10/2000	22.25	WICC	200,55	-04,90	0,003	301,39		100-43
M11-00901_C1	16/10/2000	21:17	MOC	262,12	-62,85	0,237	277,75		180-105
M11-00901 C2	16/10/2000	21:17	MOC	262.12	-62.85	0.057	277.75		180-30
M11 01480 C1	16/10/2000	22.10	MOC	200.01	FO CF	0.092	200,20		100.15
WIII-01489_CI	10/10/2000	23.19	WICC	209,91	-39,03	0,085	200,29		100-13
M11-01489_C2	16/10/2000	23:19	MOC	269,91	-59,65	0,499	280,29		180-165
M12-02565 C1	16/10/2000	05:10	MOC	269.81	-63.09	0.013	308.26		180-60
M14 00077_C1	04/04/2001	07.02	MOC	247.16	46.2	0.261	220.90		100.15
W114-00277_C1	04/04/2001	07:02	WIDC	247,10	-40,5	0,201	329,89		180-15
M13-01791_C1	04/04/2001	01:15	MOC	244,1	-57,63	0,044	324,77		180-90
M13-01791 C2	04/04/2001	01:15	MOC	244.1	-57.63	0.004	324.77		180-165
M13 00061 61	04/04/2001	00.10	MOC	240.92	62.4	0,020	210.00		190 100
WI13-00061_C1	04/04/2001	09:10	WIDC	249,82	-62,4	0,039	310,09		190-102
E13-01570 C1	04/04/2003	15:26	MOC	240,8	-57,9	0,031	329		180-105
F13-01570 C2	04/04/2003	15.26	MOC	240.8	-57 9	0.056	329		180-105
542 04570 02	01/01/2000	15.20		210,0	57,5	0,050	020		100 100
E13-01570_C3	04/04/2003	15:26	MOC	240,8	-57,9	0,447	329		180-90
E13-01570 C4	04/04/2003	15:26	MOC	240,8	-57,9	0,222	329		180-135
F13-01570 C5	04/04/2002	15.26	MOC	240.8	-57 0	0 502	370		180-125
LT2-013/0_C2	04/04/2005	10.20	NICC	240,8	-37,9	0,505	323		100-132
E13-01570_C6	04/04/2003	15:26	MOC	240,8	-57,9	0,275	329		180-165
E13-01754 C1	04/04/2003	16:29	MOC	244.1	-55.6	0.017	330.13		180-165
F12 017F4 C2	04/04/2002	16.20	MOC	244 1	FF 6	0.157	220.12		190.00
E13-01754_C2	04/04/2003	16:29	NIOC	244,1	-55,6	0,157	330,13		180-90
E13-01754_C3	04/04/2003	16:29	MOC	244,1	-55,6	0,225	330,13		180-120
E13-01754 C4	04/04/2003	16.20	MOC	244.1	-55.6	0 150	330 13		180-120
E13-01734_C4	04/04/2003	10.29	WICC	244,1	-33,0	0,139	550,15		100-120
E13-01754_C5	04/04/2003	16:29	MOC	244,1	-55,6	0,146	330,13		180-105
E14-00427 C1	04/04/2003	02:26	MOC	263.93	-59.98	0.929	339.56		180-30
514 00427 62	04/04/2002	02.20	1400	202,02	50.00	0,000	220,50		400.20
E14-00427_C2	04/04/2003	02:26	NIOC	263,93	-59,98	9,808	339,56		180-30
R09-02255_C1	20/04/2004	01:25	MOC	254,88	-52,86	1,670	263,44		180-75
B09-02255 C2	20/04/2004	01.25	MOC	254.88	-52.86	0 2 1 1	263 44		180-60
105 02255_02	20/04/2004	01.25	1000	234,00	52,00	0,211	203,44		100 00
R07-01873_C1	20/04/2004	15:10	MOC	246,42	-55,84	0,283	229		180-0
R07-01873 C2	20/04/2004	15:10	MOC	246,42	-55,84	0,523	229		180-150
P10-00/31_C1	27/00/2004	10.34	MOC	253 73	-45.62	0.046	272 5		180-165
K10-00451_C1	27/03/2004	10.54	WICC	233,73	-45,02	0,040	272,5		100-105
R10-00431_C2	27/09/2004	10:34	MOC	253,73	-45,62	0,023	272,5		180-165
ESP 030453 1310C1	24/01/2013	15:14	HIRISE	280,133	-48,67	0,110	251,1	0,001758	180-30
FED 0304F2 1310C2	24/01/2012	15.14	LUDICE	200 122	40.07	0,080	251 1	0.001004	190.0
ESP_030455_1510C2	24/01/2015	15:14	TIRISE	280,155	-46,07	0,089	251,1	0,001994	190-0
ESP_030479_1290C1	26/01/2013	14:20	HIRISE	292,218	-50,833	0,283	252,3	0,000249	180-0
ESP 030479 1290C2	26/01/2013	14:20	HIRISE	292,218	-50.833	0.435	252.3	0.000122	180-120
EST_000179_129002	20/01/2010	14:20	LUDICE	202,210	50,000	0,105	252,5	0,000122	100 120
ESP_030479_1290C3	26/01/2013	14:20	HIRISE	292,218	-50,833	0,635	252,3	0,000200	180-165
ESP 029701 1295C1	26/11/2012	15:43	HIRISE	292,088	-50,281	0,208	214,3	0,000799	180-15
FSP 029701 1295C2	26/11/2012	15.43	HIRISE	292 088	-50 281	0 203	214 3	0.001045	180-30
	20/11/2012	13.45	THRUSE	252,000	50,201	0,205	214,5	0,001045	100 50
ESP_023121_1245C1	03/07/2011	14:22	HIRISE	289,973	-55,029	0,354	321,5	0,000423	180-165
ESP 023121 1245C2	03/07/2011	14:22	HIRISE	289.973	-55.029	0.516	321.5	0.000196	180-30
FSD 023121 1245C3	03/07/2011	14.22	HIDICE	280 073	-55 029	0 5/13	221 5	0,00038	180-0
E3F_023121_1243C3	03/07/2011	14.22	HINISE	209,973	-33,029	0,343	521,5	0,000038	100-0
ESP_023121_1245C4	03/07/2011	14:22	HIRISE	289,973	-55,029	0,345	321,5	0,000051	180-45
ESP 023095 1200C1	01/07/2011	14:26	HIRISE	280.933	-59.678	0.190	320.4	0.000763	180-75
FED 022005 1200C2	01/07/2011	14.20		200,022	50,570	0,209	220.4	0,000865	190.00
ESP_023095_1200C2	01/07/2011	14.20	TIRISE	280,933	-59,078	0,208	320,4	0,000865	190-00
ESP_023095_1200C3	01/07/2011	14:26	HIRISE	280,933	-59,678	0,177	320,4	0,000155	180-60
FSP 023095 1200C4	01/07/2011	14.26	HIRISE	280 933	-59 678	0 163	320.4	0 000644	180-165
500 000005 400005	01/07/2011	11.20	LUDICE	200,000	55,670	0,100	020,1	0,000011	100 100
ESP_023095_1200C5	01/07/2011	14:26	HIRISE	280,933	-59,678	0,198	320,4	0,000539	180-45
ESP_022581_1315C1	22/05/2011	14:30	HIRISE	271,217	-47,965	0,088	296,9	0,000245	180-30
ESP 012717 1380C1	13/04/2009	15:30	HIRISE	289 72	-41,868	0.297	245 9	0.000005	180-165
ECD 012717 1200001	12/04/2000	15.00	LUDICE	200,72	11 000	0 5 44	245.0	0.0001.27	100.0
E3P_012/1/_1380C2	13/04/2009	12:30	TIRISE	209,72	-41,808	0,541	245,9	0,000137	190-0
ESP_012717_1380C3	13/04/2009	15:30	HIRISE	289,72	-41,868	0,561	245,9	0,000096	180-165
ESP 013996 115501	22/07/2009	14.42	HIRISE	295 68	-64 079	0 003	307.6	0.001516	180-30
	22/07/2003	44.42	LUDICE	205,00	64,075	0,000	207,0	0,001010	100 15
ESP_013996_1155C2	22/07/2009	14:42	HIRISE	295,68	-64,079	0,115	307,6	0,000337	180-15
ESP_013996_1155C3	22/07/2009	14:42	HIRISE	295,68	-64,079	0,162	307,6	0,000181	180-30
ESP 013996 1155C4	22/07/2009	14.42	HIRISE	295 68	-64 079	0 094	307.6	0.000418	180-150
	22/07/2005	4 4 4 4	. INGE	200,00	0-,075	0,004	207,0	0,000410	100 100
ESP_013996_1155C5	22/07/2009	14:42	HIRISE	295,68	-64,079	0,124	307,6	0,000149	180-30
ESP_013996 1155C6	22/07/2009	14:42	HIRISE	295,68	-64,079	0,083	307,6	0,000358	180-30
ESP 013996 115507	22/07/2000	14.42	HIPICE	295 68	-64 070	0.007	307.6	0.002164	180-60
F2L_013220_1122C1	22/07/2009	14.42	TINISE	233,00	-04,079	0,097	507,0	0,002104	100-00
ESP_013996_1155C8	22/07/2009	14:42	HIRISE	295,68	-64,079	0,098	307,6	0,000032	180-30
ESP 013996 1155C9	22/07/2009	14:42	HIRISE	295,68	-64,079	0,141	307,6	0,000252	180-30
ESD 013006 1155010	22/07/2000	14.40	царке	205 69	-64 070	0.110	207 6	0.001050	190.0
F3L_013330_1122C10	22/07/2009	14:42	TIRISE	295,68	-04,079	0,110	507,6	0,001059	190-0
ESP_013996_1155C11	22/07/2009	14:42	HIRISE	295,68	-64,079	0,092	307,6	0,000517	180-30
ESP 013996 1155C12	22/07/2009	14.42	HIRISE	295 68	-64 079	0 087	307.6	0.000586	180-60
	22/07/2003	4 4 4 4	LUDIC-	200,00	0,075	0,007	207,0	0,0000000	100-00
ESP_013996_1155C13	22/07/2009	14:42	HIRISE	295,68	-64,079	0,095	307,6	0,000055	180-15
ESP 013996 1155C14	22/07/2009	14:42	HIRISE	295.68	-64.079	0.084	307.6	0,000285	180-30
FSD 013006 1155015	22/07/2000	14.40	цюст	205,00	-64.070	0 1 1 0	207 6	0.001136	120 /5
ESP_013996_1155C15	22/07/2009	14:42	HIRISE	295,68	-64,079	0,110	307,6	0,001136	180-45
ESP_014049_1200C1	26/07/2009	14:38	HIRISE	287,613	-59,878	0,343	310,1	0,810015	180-0
ESP 014049 1200C2	26/07/2000	14.38	HIPICE	287 612	-59 272	0 360	310.1	0.0005.80	180-60
LJF_014047_1200C2	20/07/2009	14.30	TINISE	207,013	-33,0/0	0,509	510,1	0,000380	100-00
ESP_014049_1200C3	26/07/2009	14:38	HIRISE	287,613	-59,878	0,335	310,1	0,001060	180-60
PSP 006679 1175C1	29/12/2007	14:48	HIRISE	271.089	-62,398	0,177	9.9	0.001256	180-90
DCD_0000070_417500	20/42/2007	14.40	LUDICE	274 000	62,000	0 4 2 2	2,2	0,001050	100 405
rsr_0066/9_1175C2	29/12/2007	14:48	HIRISE	2/1,089	-62,398	0,129	9,9	0,001059	190-102
PSP_006705 1205C1	31/12/2007	14:45	HIRISE	279,847	-59,175	0,341	10,9	0,000643	180-60
PSP 006705 120502	31/12/2007	1/1-/1 ⊑	HIDICE	270 247	-50 175	0 167	10.0	0.000204	180-60
- JF_000703_1203CZ	51/12/2007	14.40	TINISE	2/3,04/	-33,1/3	0,407	10,9	0,000394	100-00
PSP_003975_1295C1	02/06/2007	15:26	HIRISE	293,314	-50,291	0,102	249,6	0,000733	180-165
PSP 003975 129502	02/06/2007	15.26	HIRISE	293 314	-50 291	0 079	249.6	0.000377	180-120
DED 002075 420502	02/06/2007	15/20	LUDICE	202.244	50,201	0,000	240.0	0,000000	100 15
rsr 003975 1295C3	02/06/2007	12:76	HIRISE	293,314	-50,291	0,096	249,6	0,000290	180-12

PSP_003975_1295C4	02/06/2007	15:26	HiRISE	293,314	-50,291	0,090	249,6	0,007266	180-15
PSP_003975_1295C5	02/06/2007	15:26	HiRISE	293,314	-50,291	0,117	249,6	0,000377	180-135
PSP 003975 1295C6	02/06/2007	15:26	HiRISE	293,314	-50,291	0,059	249,6	0,000290	180-165
PSP 003975 1295C7	02/06/2007	15:26	HiRISE	293,314	-50,291	0,107	249,6	0,007266	180-0
PSP 004094 1215C1	11/06/2007	15:22	HIRISE	285,757	-58.081	0.157	255.5	0.000124	180-135
PSP 004094 1215C2	11/06/2007	15:22	HiRISE	285,757	-58,081	0,125	255,5	0,000149	180-165
PSP 004094 1215C3	11/06/2007	15:22	HIRISE	285,757	-58.081	0.185	255.5	0.000283	180-120
PSP 004094 1215C4	11/06/2007	15:22	HIRISE	285.757	-58.081	0.190	255.5	0.000135	180-45
PSP 004120 1180C1	13/06/2007	15:24	HIRISE	296.792	-61.628	0.063	256.7	0.000145	180-45
PSP 004120 1180C2	13/06/2007	15:24	HIRISE	296,792	-61.628	0.071	256.7	0.000229	180-0
PSP_004213_1220C1	20/06/2007	15.16	HIRISE	276 949	-57 889	0 146	261.3	0.000519	180-60
PSP_004213_1220C2	20/06/2007	15:16	HIRISE	276,949	-57,889	0.094	261.3	0.000133	180-15
M09-05444_C1	16/10/2000	15.13	MOC	273 75	-30.1	0 4 9 1	249 19	0,000100	180-15
M11-01973_C1	16/10/2000	00.04	MOC	288.65	-50.82	0.014	282 17		180-120
M11-01467_C1	16/10/2000	21.21	MOC	296.91	-53 5	0 104	280 24		180-60
M11-01467_C1	16/10/2000	21.21	MOC	206.01	-53.5	0,104	200,24		180-120
M10 02544_C1	16/10/2000	00.16	MOC	200,01	-33,5	0,055	200,24		190 120
M10-02544_C1	16/10/2000	09.10	MOC	201,50	-54,35	0,505	267.4		180-155
M12 02720 C1	16/10/2000	05.10	MOC	201,50	-54,55	0,075	207,4		190.0
M12-02759_C1	10/10/2000	02.11	MOC	271,04	-33,33	0,010	209,43		180-20
N112-02552_C1	16/10/2000	21.20	MOC	296,30	-03,15	0,250	200,21		180-50
N111-01465_C1	16/10/2000	21.20	MOC	298,9	-01,15	0,049	260,24		180-45
M11-01465_C2	16/10/2000	21:20	MOC	298,9	-61,15	0,319	280,24		180-0
M11-01463_C1	16/10/2000	21:19	MOC	299,36	-60,64	0,482	280,24		180-135
M11-01463_C2	16/10/2000	21:19	MOC	299,36	-60,64	0,061	280,24		180-135
M12-01482_C1	16/10/2000	20:26	MOC	289,1	-64,99	0,024	301,54		180-15
M11-01340_C1	16/10/2000	22:01	MOC	282,92	-62,77	0,440	279,63		180-30
M11-01340_C2	16/10/2000	22:01	MOC	282,92	-62,77	0,016	279,63		180-0
M12-01805_C1	16/10/2000	23:08	MOC	281,56	-64,46	0,020	303,39		180-90
M11-01797_C1	16/10/2000	00:19	MOC	275,14	-62,58	0,088	281,56		180-120
M11-01797_C2	16/10/2000	00:19	MOC	275,14	-62,58	0,082	281,56		180-30
M11-01797_C3	16/10/2000	00:19	MOC	275,14	-62,58	0,030	281,56		180-45
M12-02737_C1	16/10/2000	06:16	MOC	274,09	-62,76	0,118	309,45		180-60
M11-01487_C1	16/10/2000	23:18	MOC	270,79	-62,67	0,336	280,29		180-30
M11-01487_C2	16/10/2000	23:18	MOC	270,79	-62,67	0,006	280,29		180-60
M13-00307_C1	04/04/2001	07:31	MOC	299,06	-61,84	0,007	312,4		180-150
M13-00307_C2	04/04/2001	07:31	MOC	299,06	-61,84	0,021	312,4		180-15
M14-00189_C1	04/04/2001	03:20	MOC	289,83	-55,83	0,328	329,26		180-0
M13-00323_C1	04/04/2001	09:30	MOC	270,51	-61,76	0,072	312,44		180-75
M13-00707_C1	04/04/2001	14:13	MOC	271,22	-60,42	0,003	316,59		180-75
M13-00707_C2	04/04/2001	14:13	MOC	271,22	-60,42	0,001	316,59		180-0
M13-01197_C1	04/04/2001	18:33	MOC	271,98	-59,13	0,018	320,68		180-120
M13-01197_C2	04/04/2001	18:33	MOC	271,98	-59,13	0,044	320,68		180-165
M13-01781_C1	04/04/2001	23:17	MOC	272,7	-57,68	0,020	324,72		180-0
M13-00049_C1	04/04/2001	07:12	MOC	277,08	-57,77	0,002	310,64		180-0
M13-00049_C2	04/04/2001	07:12	MOC	277,08	-57,77	0,355	310,64		180-120
M13-00049_C3	04/04/2001	07:12	MOC	277,08	-57,77	0,026	310,64		180-105
M13-00049 C4	04/04/2001	07:12	MOC	277,08	-57,77	0,511	310,64		180-105
M13-00049 C5	04/04/2001	07:12	MOC	277,08	-57,77	0,010	310,64		180-45
R09-01640 C1	20/04/2004	21:07	MOC	291,29	-51,58	0,646	261,43		180-75
R09-01640 C2	20/04/2004	21:07	MOC	291,29	-51,58	0,167	261,43		180-15
R09-02435 C1	20/04/2004	01:08	MOC	271.93	-55.86	3.880	264.06		180-90
R11-02666 C1	27/09/2004	12:22	MOC	295,32	-57,32	0,230	299,58		180-165
R11-02666 C2	27/09/2004	12:22	MOC	295,32	-57,32	0,164	299,58		180-15
R11-01807 C1	27/09/2004	10:33	MOC	272.06	-59.42	0,152	296.54		180-60
R11-01807 C2	27/09/2004	10:33	MOC	272.06	-59.42	0.177	296.54		180-75
R10-04305 C1	27/09/2004	22:35	MOC	283.07	-61.31	0.636	285.87		180-90
R10-04305_C2	27/09/2004	22:35	MOC	283.07	-61 31	0 368	285.87		180-30
R10-04305_C3	27/09/2004	22:35	MOC	283.07	-61 31	0.269	285 87		180-15
R10-04054_C1	27/09/2004	21.17	MOC	295 33	-60.88	0 334	285 22		180-30
R10-04054_C1	27/09/2004	21.17	MOC	295,33	-60.88	0,334	285 22		180-45
R10-04054_C2	27/00/2004	21.17	MOC	295,55	-60.88	1 015	205,22		180-45
110-04034_03	27/05/2004	21.17	WICC	233,33	-00,00	1,013	203,22		100-43

CONSIDERAÇÕES FINAIS

De maneira geral, o trabalho correspondeu ao objetivo proposto que consistiu em detectar feições eólicas em imagens HiRISE e MOC, da região de Thaumasia em Marte por meio do método automático de detecção de feições eólicas em imagens digitais com o uso da teoria de Morfologia Matemática, que consiste em simulação numérica e mecânica em laboratório, por um sistema metodológico para reconhecimento dos rastros em imagens orbitais do planeta. Uma condição importante a ser levada em consideração é que as regiões de interesse não possuíam o mesmo formato e tamanho, isto pode ser explicado devido as imagens obtidas pela câmera HiRISE principalmente possuir um vasto tamanho e ser necessário o seu recorte com utilização de programas de SIG para seu processamento, assim

os valores obtidos foram influenciados pelo recorte das cenas originais. Os resultados podem ser usados para auxiliar na compreensão do fenômeno que ocorre no ambiente marciano, contribuindo para o entendimento de como os vórtices de dust devils podem influenciar nas variações locais climáticas do planeta e se faz importante por ser, o processo geológico com/em maior atividade geológica no planeta. Contudo, muito ainda se tem a conhecer sobre este processo eólico que existe no planeta nesta área de estudo.

Dust devil tracks detection in Thaumasia-Mars

ABSTRACT

We have applied a digital image processing method for automatic detection and characterization of martian dust devil tracks. These features are produced by convective vortices, which are formed by instable warm air near the surface due to insolation. The study area was Thaumasia, and the method was based on the Mathematical Morphology, which is a nonlinear tool for processing digital images. The tracks have been automatically detected from the digital images, which allowed us to calculate the following characteristics of the vortices: mean and maximum width, recovering area, main direction and reflectance. Such information will help understand the phenomenon active on Mars surface, contributing to answer how they can influence in local climatic variation on the planet, which is important given that those vortices are the most active geologic factor in present day.

KEYWORDS: Mars. Convective Vortices. Digital Image Processing.

AGRADECIMENTOS

Ao CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico, pelo incentivo ao Desenvolvimento de pesquisas pelo Programa de Iniciação Cientifica PIBITI - Programa Institucional de Bolsas de Iniciação em Desenvolvimento Tecnológico e Inovação.

REFERÊNCIAS BIBLIOGRÁFICAS

AMARANTE, O. A. C.; BROWER, M.; ZACK, J.; SÁ, A.L; Atlas do Potencial Eólico Brasileiro, Brasília, 2001.

BADDELEY, P. F. H. Whirlwinds and Dust Storms of India, ed. Bell and Daldey, London, 1860.

HENDRIKS, C. L. L. Constrained and Dimensiona lity-Independent Path Openings. IEEE Transactions on Image Processing. Volume 19, Páginas 1587 – 1595, 2010.

REISS, D.; ZANETTI, M.; NEUKUM, G. Multitemporal Observations of Identical Active Dust Devils on Mars with the High Resolution Stereo Camera (HRSC) and Mars Orbiter Camera (MOC), Icarus, Volume 215, Páginas 358-369. 2011.

SERRA, J. Image Analysis and Mathematical Morphology. Academic Press, Página 610, Londres, 1982.

SOILLE, P. Morphological Image Analysis. Springer-Verlag, Berlin, Edição 2, Páginas 391. 2004.

STATELLA, T.; PINA, P.; SILVA, E.A. Image processing algorithm for the identification of Martian dust devil tracks in MOC and HiRISE images. Planetary and Space Science, v. 70, p. 46-58. 2012.

THOMAS, P.; GIERASCH, P. Dust Devils on Mars. Science, p. 175-177. 1985.

BRIDGES, N.; Aeolian Processos. HiRISE, 2016. Disponível em: http://www.uahirise.org/science_themes/aeolian.php>. Acesso em: 10/05/2016.

Recebido: 23 set. 2016

Aprovado: 09 dez. 2016

DOI: 10.3895/rbgeo.v5n1.5426

Como citar: ALMEIDA, L. T.; STATELLA, T. Detecção de rastros de dust devils em Thaumasia-Marte. Rev. Bras. Geom., Curitiba, v. 5, n. 1, p. 3-17, jan./mar. 2017. Disponível em: https://periodicos.utfpr.edu.br/rbgeo. Acesso em: XXX.

Correspondência: Luciene Toledo e Almeida

Rua Zulmira Canavarros 95. Cep 78032-175. Cuiabá, MT, Brasil.

Direito autoral: Este artigo está licenciado sob os termos da Licença Creative Commons-Atribuição 4.0 Internacional.

