

Análise comparativa das coordenadas no Sistema Geodésico Local e no Sistema Topográfico Local

RESUMO

Uma das atividades importantes dos profissionais em Geodésia consiste nas transformações entre sistemas de coordenadas e, dependendo da finalidade, deve-se recorrer a um ou outro sistema. Os sistemas de coordenadas locais possibilitam maior precisão na implantação de obras de engenharia e nos trabalhos cadastrais, dentre os quais destaca-se o Sistema Topográfico Local, adotado em levantamentos municipais para fins de cadastro, conforme a NBR 14166/98, e o Sistema Geodésico Local, aplicado quando no georreferenciamento de imóveis rurais, de acordo com o Manual Técnico de Posicionamento da NTGIR (INCRA, 2013a). Com o objetivo de realizar uma análise comparativa das coordenadas obtidas nos dois sistemas de coordenadas tridimensionais locais, adotou-se, como objeto de estudo, vinte e oito marcos localizados no IFSULDEMINAS e uma estação geodésica homologada pelo IBGE, os quais tiveram suas coordenadas geodésicas obtidas por meio do posicionamento por GNSS, com os métodos relativo estático e estático rápido. Conclui-se, a partir das coordenadas locais obtidas e das comparações pontuais, lineares e de superfície realizadas, que ambos os sistemas apresentam uma divergência pequena, contudo significativa, o que faz com que os mesmos não sejam considerados equivalentes e, desse modo, a aplicabilidade de cada um deve obedecer às exigências das normas técnicas.

PALAVRAS-CHAVE: GNSS. Sistema Geodésico. Sistema Topográfico. Coordenadas locais.

Débora Paula Simões

deborapaula.ds@gmail.com orcid.org/0000-0002-1615-988X Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais (IFSULDEMINAS) – Campus Inconfidentes, Inconfidentes, Minas Gerais, Brasil.

Fábio Luiz Albarici

fabio.albarici @ifsuldeminas.edu.br orcid.org/0000-0003-4436-0561 Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais (IFSULDEMINAS) – Campus Inconfidentes, Inconfidentes, Minas Gerais, Brasil.

Paulo Augusto Ferreira Borges

paulo.borges @ifsuldeminas.edu.br orcid.org/0000-0002-4792-8637 Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais (IFSULDEMINAS) – Campus Inconfidentes, Inconfidentes, Minas Gerais, Brasil.

INTRODUÇÃO

Uma das atividades de muita importância do profissional em agrimensura e cartografia consiste nas transformações entre sistemas de coordenadas, o que pode ser entendido como a relação das coordenadas de um ponto da superfície terrestre em dois sistemas de coordenadas diferentes. Dependendo da finalidade e do trabalho a ser realizado, é necessário que se recorra a um ou outro sistema específico. É comum, em projetos de engenharia e cadastros, a utilização de um sistema de coordenadas locais, o qual possibilita maior precisão na implantação de obras e a geração de plantas cadastrais com uma melhor qualidade. Segundo Monico (2008), os sistemas de coordenadas terrestres locais proporcionam apoio para levantamentos tridimensionais locais. Dentre eles destaca-se o Sistema Geodésico Local e o Sistema Topográfico Local.

O Sistema Geodésico Local é adotado nos trabalhos de georreferenciamento de imóveis rurais e, segundo o Manual Técnico de Posicionamento (INCRA, 2013a), pode ser aplicado no cálculo de áreas, no uso do método de posicionamento por geometria analítica е em projetos de parcelamento/desmembramento. Além disso, de acordo com Monico (2008), no posicionamento por satélite, o Sistema Geodésico Local também apresenta grande utilidade, sendo usado para obter o azimute e o ângulo vertical e para analisar, em termos de componentes horizontal e vertical, o erro em cada uma das coordenadas X, Y e Z. Já o Sistema Topográfico Local, segundo a NBR 14166/98, consiste no sistema de representação, em planta, das posições relativas de pontos de um levantamento topográfico com origem em um ponto de coordenadas geodésicas conhecidas (ABNT, 1998). No Brasil, o Sistema Topográfico Local é adotado em levantamentos municipais para fins de cadastro.

Diante das diversas aplicabilidades referentes aos sistemas de coordenadas locais, objetiva-se por meio desse estudo realizar uma análise comparativa das coordenadas no Sistema Topográfico Local e no Sistema Geodésico Local, evidenciando-se as discrepâncias existentes entre ambos os sistemas por meio de comparações envolvendo grandezas pontuais, lineares e de superfície.

FUNDAMENTAÇÃO TEÓRICA

POSICIONAMENTO POR GNSS NOS MÉTODOS RELATIVO ESTÁTICO E RELATIVO ESTÁTICO RÁPIDO

O posicionamento relativo tem por objetivo a determinação do vetor entre dois pontos, chamado de vetor da linha de base ou simplesmente linha de base (HOFMANN-WELLENHOF et al, 2008). Segundo o Manual Técnico de Posicionamento, da Norma Técnica de Georreferenciamento de Imóveis Rurais (NTGIR), 3ª edição, no posicionamento relativo é necessário que dois ou mais receptores GNSS coletem dados simultaneamente, onde ao menos um dos receptores ocupe um vértice de referência. Ainda de acordo com o manual, no posicionamento relativo podem ser utilizadas as seguintes observáveis: fase da onda portadora, pseudodistância ou as duas em conjunto; sendo que a fase da onda portadora proporciona a melhor precisão (INCRA, 2013a).

No posicionamento relativo estático, dois ou mais receptores rastreiam simultaneamente, os satélites visíveis por um período de tempo que pode variar de dezenas de minutos (20 minutos, no mínimo) até algumas horas. Já no posicionamento relativo estático rápido, um receptor serve como base, permanecendo fixo sobre uma estação de referência, coletando dados, enquanto outro percorre as estações de interesse (receptor móvel), em cada uma das quais permanece parado cerca de 5 a 20 minutos para coletar dados. Nesse último método, o vetor das ambiguidades envolvido em cada linha-base deve ser solucionado, isto é, fixado como inteiro, para que os resultados obtidos apresentam razoável nível de precisão (MONICO, 2008).

SISTEMA GEODÉSICO LOCAL

De acordo com a NTGIR, 3ª edição, o Sistema Geodésico Local (SGL) é um sistema cartesiano composto de três eixos mutuamente ortogonais (e, n, u), onde o eixo "n" aponta em direção ao norte geodésico, o eixo "e" aponta para a direção leste e é perpendicular ao eixo "n", ambos contidos no plano topocêntrico, e o eixo "u" coincide com a normal ao elipsoide que passa pelo vértice escolhido como a origem do sistema (INCRA, 2013b). A Figura 1 ilustra um ponto sobre a superfície terrestre associado ao Sistema Geodésico Local e ao Sistema Geocêntrico.

Figura 1 – Sistema Geodésico Local e Sistema Geocêntrico

Fonte: INCRA (2013a).

Segundo a NTGIR, 3ª edição, as coordenadas cartesianas geocêntricas, correspondentes ao Sistema Geocêntrico, são coordenadas referenciadas a três eixos ortogonais com origem no centro de massa da terra, sendo o eixo Z orientado na direção do Conventional Terrestrial Pole (Pólo Terrestre Convencional), o eixo X na direção média do meridiano de Greenwich e o eixo Y de modo a tornar o sistema dextrógiro (INCRA, 2013b). Apresenta-se a seguir (Equações 1 a 5) a formulação matemática com a qual se obtêm as coordenadas geocêntricas (X_c, Y_c, Z_c) de um ponto cujas coordenadas geodésicas (φ , λ , h) são conhecidas (RAPP, 1991).

$X_c = (N+h)\cos\phi\cos\lambda$	(1)
----------------------------------	-----

 $Y_c = (N+h)\cos\varphi\,\sin\lambda \tag{2}$

$$Z_c = [N(1 - e^2) + h]\sin\phi \tag{3}$$

$$N = \frac{a}{\left(1 - e^2 \sin^2 \varphi\right)^{1/2}}$$
(4)

$$e^2 = \frac{a^2 - b^2}{a^2}$$
(5)

Em que:

 X_c, Y_c, Z_c = correspondem às coordenadas geocêntricas de um ponto com coordenadas geodésicas conhecidas, o qual se deseja determinar suas coordenadas cartesianas locais (e, n e u);

 φ , λ , h = coordenadas geodésicas (latitude, longitude e altura geométrica) conhecidas do referido vértice;

N = raio de curvatura da seção primeiro vertical;

 e^2 = quadrado da primeira excentricidade (e) do elipsoide de referência, sendo a e b os semi-eixos maior e menor, respectivamente, do elipsoide de referência adotado no SGB (Sistema Geodésico Brasileiro).

Dispondo-se das coordenadas geocêntricas (X_c, Y_c, Z_c) de um determinado vértice é possível obter as coordenadas cartesianas locais (e, n, u), que correspondem a coordenadas cartesianas definidas num plano topocêntrico local perpendicular à normal e tangente ao elipsoide elevado à superfície terrestre no ponto origem do SGL (INCRA, 2013b), adotando-se o método das rotações e translações (INCRA, 2013a), conforme modelo funcional dado pela Equação 6.

$$\begin{bmatrix} e \\ n \\ u \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \sin \varphi_0 & \cos \varphi_0 \\ 0 & -\cos \varphi_0 & \sin \varphi_0 \end{bmatrix} \begin{bmatrix} -\sin \lambda_0 & \cos \lambda_0 & 0 \\ -\cos \lambda_0 & -\sin \lambda_0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} X - X_0 \\ Y - Y_0 \\ Z - Z_0 \end{bmatrix} + \begin{bmatrix} e_0 \\ n_0 \\ u_0 \end{bmatrix}$$
(6)

Em que:

e, n, u = coordenadas cartesianas locais do vértice de interesse;

 $e_0, n_0, u_0 =$ coordenadas arbitradas para o vértice origem para que as coordenadas cartesianas locais de interesse não sejam negativas;

 X_c, Y_c, Z_c = coordenadas cartesianas geocêntricas do vértice de interesse;

 $\phi_0, \lambda_0 =$ latitude e longitude adotadas como origem do sistema;

 $X_0, Y_0, Z_0 =$ coordenadas cartesianas geocêntricas adotadas como origem do sistema.

SISTEMA TOPOGRÁFICO LOCAL

O Sistema Topográfico Local (STL), segundo a NBR 13133/94, consiste no sistema de projeção utilizado nos levantamentos topográficos pelo método direto clássico para a representação das posições relativas dos acidentes levantados, através de medições angulares e lineares, horizontais e verticais.

O plano de representação, origem, eixos e orientação são os elementos constituintes do sistema, fundamentais para o posicionamento dos pontos do levantamento por intermédio de um sistema cartesiano ortogonal em duas dimensões, em que os eixos X, positivo no sentido leste, e Y, coincidente à linha meridiana geográfica, estão jacentes no Plano do Horizonte Local, adotando-se, para efeito de cálculos, a esfera de adaptação de Gauss como figura geométrica da terra. O plano do horizonte local é elevado à altitude ortométrica, H, média da área de abrangência do sistema, passando a chamar-se Plano Topográfico Local, conforme indicado na Figura 2 (ABNT, 1998).

Figura 2 – Sistema Topográfico Local

As coordenadas plano-retangulares (X, Y) dos marcos geodésicos de apoio imediato no Sistema Topográfico Local são obtidas a partir de suas coordenadas geodésicas (φ , λ) e das coordenadas geodésicas da origem do sistema (φ_0 , λ_0). Às coordenadas plano-retangulares da origem do Sistema Topográfico Local (0,0) são adicionados os termos constantes 150000,000 m e 250000,000 m, respectivamente, para a abscissa (X) e para a ordenada (Y), no escopo de evitarem-se valores negativos nos demais pontos da área de abrangência do sistema (ABNT, 1998). A partir das coordenadas plano-retangulares dos pontos geodésicos de apoio imediato são obtidas as coordenadas plano-retangulares dos pontos levantados, topograficamente, na área de abrangência do Sistema Topográfico Local (ABNT, 1998), de acordo com as equações apresentadas a seguir (Equação 7 a Equação 22).

$X = 150000 + x_p$ (7)

$$Y = 250000 + y_p$$
(8)

$$x_p = -(\Delta \lambda_1 \cos \varphi_n N_p \operatorname{arc1"}). c \tag{9}$$

$$y_p = \frac{1}{B} \Big[\Delta \varphi_1 + C x_p^2 + D \big(\Delta \varphi_1 \big)^2 + E \big(\Delta \varphi_1 \big) x_p^2 + E C x_p^4 \Big] . c$$
(10)

$$\Delta \lambda = \lambda_p - \lambda_o \tag{11}$$

$$\Delta \varphi = \varphi_p - \varphi_o \tag{12}$$

$$\Delta \lambda_1 = \Delta \lambda'' [1 - 3,9173 . 10^{-12} (\Delta \lambda'')^2]$$
(13)

$$\Delta \phi_1 = \Delta \phi'' [1 - 3,9173 . 10^{-12} (\Delta \phi'')^2]$$
(14)

$$B = \frac{1}{M_0 arc1"} \tag{15}$$

$$C = \frac{tan\phi_0}{2M_0 N_0 arc1"} \tag{16}$$

$$D = \frac{3e^2 \sin \varphi_0 \cos \varphi_0 arc1"}{2(1 - e^2 \sin^2 \varphi_0)}$$
(17)

$$E = \frac{1 + 3tan\phi_0}{6N_0^2}$$
(18)

$$c = \frac{R_0 + H}{R_0} \tag{19}$$

$$R_0 = \sqrt{M_0 N_0} \tag{20}$$

$$M_0 = \frac{a(1-e^2)}{\left(1-e^2\sin^2\varphi_0\right)^{3/2}}$$
(21)

$$N_0 = \frac{a}{\left(1 - e^2 \sin^2 \varphi_0\right)^{1/2}} \tag{22}$$

Em que:

X, *Y* = coordenadas plano-retangulares no Sistema Topográfico Local;

 $\label{eq:phi} \phi_p, \lambda_p = {\rm coordenadas\ geodésicas\ (latitude\ e\ longitude,\ respectivamente)\ do}$ vértice P considerado;

 $\phi_0, \lambda_0 =$ coordenadas geodésicas do ponto origem do sistema;

 M_0 = raio de curvatura da seção meridiana do elipsoide de referência em P₀ (origem do sistema);

 N_0 = raio de curvatura da seção normal ao plano meridiano do elipsoide de referência em P₀;

c = fator de elevação;

H = altitude ortométrica média do terreno ou altitude do plano topográfico local.

Conforme Monico (2008), a altitude ortométrica (H) é vinculada ao campo de gravidade da Terra e tem valor aproximado obtido por meio da Equação 23, na qual h corresponde à altitude geométrica, proporcionada pelo GNSS, e G corresponde à ondulação do geoide.

$$H \cong h - G \tag{23}$$

Segundo a NBR 14166, as coordenadas plano-retangulares no Sistema Topográfico Local subentendem que as observações angulares, horizontais e lineares, nas operações topográficas de sua determinação, estão representadas em verdadeira grandeza no plano topográfico local, com orientação, em planta, para o norte da quadrícula, o que significa que estão afetadas pela convergência meridiana, a qual só é nula para pontos situados ao longo do meridiano da origem do sistema, e somente o eixo das ordenadas (Y) está orientado para o norte geográfico (ABNT, 1998). Para cálculo da convergência meridiana adotamse as seguintes equações (Equações 24 a 27):

$$\gamma_p = -[\Delta \lambda'' \sin \varphi_m \sec \frac{\Delta \varphi}{2} + F(\Delta \lambda'')^3]$$
(24)

$$F = \frac{\sin\varphi_m \cos\varphi_m \sin^2 1''}{12} \tag{25}$$

$$\Delta \lambda'' = (\lambda_p - \lambda_0).3600 \tag{26}$$

$$\Delta \phi = \phi_p - \phi_0 \tag{27}$$

Sendo:

 γ_p = convergência meridiana no ponto considerado, que corresponde à diferença entre o azimute direto na direção OP (O – origem do sistema e P – ponto geodésico considerado) e o azimute recíproco desta direção (PO) (ABNT, 1998);

 $\phi_m =$ latitude média entre o ponto geodésico considerado (P) e a origem do sistema (O).

Quanto à área de abrangência do Sistema Topográfico Local, a NBR 14166/98 salienta que as coordenadas plano-retangulares devem estar limitadas, em seus valores absolutos (isentas dos termos constantes), ao máximo de 50000 m, de maneira que nenhum ponto diste da origem do sistema mais que 70710,68 m, o que garantirá um erro relativo decorrente da desconsideração da curvatura terrestre menor que 1:50000 nesta dimensão e 1:20000 nas imediações de sua extremidade (ABNT, 1998).

METODOLOGIA

Para realizar a comparação entre coordenadas cartesianas locais, referidas ao Sistema Geodésico Local, e coordenadas topográficas locais, referidas ao Sistema Topográfico Local, rastreou-se vinte e oito vértices materializados por concreto, localizados ao longo do perímetro da Fazenda Escola, pertencente ao IFSULDEMINAS – Campus Inconfidentes. Na Figura 3 destaca tais vértices, nomeando-os com o prefixo M, cuja numeração varia de 01 a 28.

Figura 3 – Localização dos vinte e oito marcos na Fazenda Escola do IFSULDEMINAS – Campus Inconfidentes

Fonte: Google Earth (2016).

Objetivando-se determinar com precisão as coordenadas geodésicas (φ , λ , h) desses marcos, realizou-se o posicionamento por GNSS, adotando-se os métodos relativo estático e estático rápido. Para isso, utilizou-se de receptores GNSS da marca Spectra Precision, modelo ProMarkTM 220, bem como suas respectivas antenas GNSS (modelo ASH 111661). Dispondo-se de tais equipamentos, adotou-se um tempo de rastreio entre 10 e 30 minutos em cada marco rastreado, levando em consideração as condições externas do local para determinar o tempo suficiente de rastreio que garantisse a obtenção de coordenadas precisas, adotando-se, assim, ora o método estático ora o estático rápido. Já as coordenadas da estação geodésica (Estação 93949), utilizada como ponto de controle no processamento dos dados levantados e ilustrada pela Figura 4, foram obtidas por meio de seu respectivo relatório disponível no site do IBGE, no seguinte endereço eletrônico: http://www.ibge.gov.br/home/geociencias/geodesia/bdgpesq_googlemaps.php#tabela_dados.

Figura 4 – Estação 93949, IFSULDEMINAS – Campus Inconfidentes

Fonte: IBGE (2016).

Dispondo-se dos arquivos brutos, obtidos no posicionamento por GNSS, processou-se os dados coletados através do *software GNSS Solutions*TM v3.80.8. Tanto no rastreio dos marcos, como no processamento dos dados, utilizou-se o sistema de referência SIRGAS 2000 (Sistema de Referência Geocêntrico para as Américas, em sua realização no ano 2000), no fuso 23 S e meridiano central de – 45°, vinculando-se as coordenadas ao SGB e obtendo-se as coordenadas geodésicas (φ , λ , h) e na projeção UTM (E, N, h) dos vértices de estudo.

Aplicou-se, então, a transformação de coordenadas geodésicas em coordenadas cartesianas geocêntricas, utilizando-se as expressões apresentadas nas Equações 1 a 5. A partir dessas últimas, determinou-se as coordenadas cartesianas locais (e, n, u) de cada um dos marcos e da estação geodésica 93949, adotando-se a expressão matricial apresentada pela Equação 6. Em seguida, realizou-se o cálculo das coordenadas topográficas locais (X, Y, Z) utilizando-se o *software DataGeosis Office* v7.5.10.3, o qual adota as equações apresentadas na seção 2.3.

Como o STL constitui-se num sistema de coordenadas planas (X, Y), conforme a NBR 14166/98, assumiu-se que as coordenadas referentes ao eixo z equivalem às suas respectivas altitudes ortométricas, as quais foram calculadas utilizando-se o *software* MAPGEO 2015 v1.0. Obtendo-se a ondulação geoidal para cada ponto no MAPGEO 2015 v1.0, aplicou-se a Equação 23 e determinou-se as altitudes ortométricas, sendo as altitudes geométricas conhecidas a partir do processamento dos dados obtidos no posicionamento por GNSS.

Dispondo-se das coordenadas topográficas locais e das coordenadas cartesianas locais dos marcos e da estação geodésica, realizou-se uma análise das mesmas, a fim de se comprovar a compatibilidade dos sistemas em estudo e/ou possíveis discrepâncias existentes entre eles. Inicialmente, comparou-se as coordenadas absolutas de cada um dos vértices isoladamente, o que é possível uma vez que as coordenadas para o ponto origem, tanto no STL quanto no SGL, são as mesmas ($X_0 = e_o = 150000,000$ m; $Y_o = n_o = 250000,000$ m e $Z_0 = u_o$).

Como ponto origem dos dois sistemas em análise, adotou-se um ponto virtual, denominado de **ORIGEM**, cujas coordenadas geodésicas correspondem à média da latitude e da longitude dos vinte e nove pontos em análise, adotando-se para a altitude a média das altitudes ortométricas dos mesmos pontos, conforme recomendação do Manual Técnico de Posicionamento, para o Sistema Geodésico Local, e da NBR 14166/98, para o Sistema Topográfico Local.

A segunda análise realizada se deu a partir de grandezas lineares, calculandose o perímetro (P) do polígono formado a partir dos vinte e oito marcos, que consiste na somatória do comprimento dos lados de um polígono (Equação 28). Para determinar a distância entre dois marcos consecutivos, recorreu-se duas metodologias distintas:

a) 1ª: Cálculo da distância euclidiana (d) a partir das coordenadas tridimensionais conhecidas de dois pontos, conforme a Equação 29, apresentada em Venturi (1949), utilizando-se as coordenadas topográficas locais (X, Y, Z) ou as coordenadas cartesianas locais (e, n, u);

b) $2^{\underline{a}}$: Cálculo da distância topocêntrica (dt) levando-se em consideração a altitude elipsoidal, conforme a Equação 30, recomendada por INCRA (2013a).

$$P = \sum_{i=1}^{l} d_i \tag{28}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$
(29)

$$dt = \left[\left(X_{c_A} - X_{c_b} \right)^2 + \left(Y_{c_A} - Y_{c_B} \right)^2 + \left(Z_{c_A} - Z_{c_B} \right)^2 - (h_A - h_B)^2 \right]^{1/2}$$
(30)

Sendo:

 d_i = distância entre dois vértices consecutivos;

l = total de lados do polígono;

 $x_1, y_1, z_1 =$ coordenadas tridimensionais de um ponto, correspondentes a X_1, Y_1, Z_1 ou a e_1, n_1, u_1 , conforme o caso;

 $x_2, y_2, z_2 =$ coordenadas tridimensionais do ponto consecutivo, correspondentes a X_2, Y_2, Z_2 ou a e_2, n_2, u_2 , conforme o caso;

 $X_c, Y_c, Z_c =$ coordenadas cartesianas geocêntricas;

h = altitude elipsoidal.

Obteve-se, assim, três conjuntos de distâncias (distâncias horizontais a partir das coordenadas topográficas locais, distâncias topocêntricas a partir das coordenadas geodésicas locais e distâncias também topocêntricas a partir das coordenadas cartesianas geocêntricas), calculando-se três perímetros distintos.

Por fim, calculou-se a área do polígono formado pelos marcos considerados através das coordenadas locais nos dois sistemas analisados. De acordo com Veiga, Zanetti e Faggion (2012), o cálculo da área (*A*) pode ser realizado a partir do cálculo da área de trapézios formados pelos vértices da poligonal, que consiste na Fórmula de Gauss, apresentada pela Equação 31.

$$2A = \sum_{i=1}^{t} (y_i, x_{i+1}) - \sum_{i=1}^{t} (x_i, y_{i+1})$$
(31)

Em que:

x, y = coordenadas retangulares dos vértices do polígono, correspondentes a X, Y ou a e, n, conforme o caso;

t = total de vértices do polígono considerado. Para o estudo em questão, t equivale à quantidade de marcos rastreados (t = 28). Deve-se observar que quando i = t, o valor de i+1 deve ser considerado como sendo 1, ou seja, o primeiro ponto novamente (VEIGA; ZANETTI; FAGGION, 2012).

RESULTADOS E DISCUSSÃO

Na Tabela 1 apresenta-se as coordenadas geodésicas, determinadas a partir do posicionamento por GNSS e processamento dos dados, dos vinte e oito marcos considerados, da estação geodésica 93949 e do ponto virtual utilizado como origem, bem como as ondulações geoidais (G), calculadas a partir do *software* MAPGEO 2015 v1.0, e as referidas altitudes ortométricas (H) para os trinta vértices em questão.

Tabela 1 – Coordenadas geodésicas dos vinte e oito marcos considerados, da estação homologada pelo IBGE (93949) e do ponto ORIGEM, no sistema de referência SIRGAS2000

Vértice	φ	λ	h (m)	G (m)	H (m)
93949	22° 19' 09,768700''S	46° 19' 44,113998''W	884,825	-2,76	887,585
M1	22° 18' 50,370570''S	46° 19' 26,099830''W	848,394	-2,75	851,144
M2	22° 18' 48,472340''S	46° 19' 25,893410''W	849,017	-2,75	851,767
M3	22° 18' 44,712580''S	46° 19' 25,835070''W	862,299	-2,75	865,049
M4	22° 18' 41,628560''S	46° 19' 25,831420''W	879,909	-2,76	882,669
M5	22° 18' 36,413820''S	46° 19' 25,785940''W	904,668	-2,76	907,428
M6	22° 18' 32,085010''S	46° 19' 25,682240''W	895,847	-2,76	898,607
M7	22° 18' 28,579520''S	46° 19' 25,613680''W	906,162	-2,76	908,922
M8	22° 18' 24,886720''S	46° 19' 25,702600''W	899,686	-2,76	902,446
M9	22° 18' 20,875660''S	46° 19' 25,688710''W	885,301	-2,76	888,061
M10	22° 18' 20,797620''S	46° 19' 31,787980''W	927,226	-2,77	929,996
M11	22° 18' 20,912930''S	46° 19' 37,695730''W	897,254	-2,78	900,034
M12	22° 18' 20,817410''S	46° 19' 42,774050''W	880,004	-2,78	882,784
M13	22° 18' 20,699480''S	46° 19' 51,405300''W	939,646	-2,79	942,436
M14	22° 18' 17,173330''S	46° 19' 51,358960''W	930,788	-2,79	933,578
M15	22° 18' 12,522930''S	46° 19' 51,325140''W	908,971	-2,79	911,761
M16	22° 18' 08,434280''S	46° 19' 51,298370''W	894,331	-2,80	897,131
M17	22° 18' 04,291660''S	46° 19' 51,122400''W	886,486	-2,80	889,286
M18	22° 18' 05,761800''S	46° 20' 14,866440''W	876,742	-2,82	879,562

Página | 72

M19	22° 18' 10,433560''S	46° 20' 15,285210''W	883,206	-2,82	886,026
M20	22° 18' 16,565890''S	46° 20' 15,526660''W	889,984	-2,82	892,804
M21	22° 18' 26,061590''S	46° 20' 15,363530''W	927,961	-2,81	930,771
M22	22° 18' 30,267830''S	46° 20' 15,430690''W	936,086	-2,81	938,896
M23	22° 18' 38,087560''S	46° 20' 15,564450''W	926,552	-2,81	929,362
M24	22° 18' 41,373920''S	46° 20' 15,742570''W	892,771	-2,81	895,581
M25	22° 18' 47,333320''S	46° 20' 15,831210''W	887,578	-2,80	890,378
M26	22° 18' 52,810370''S	46° 20' 15,946990''W	892,585	-2,80	895,385
M27	22° 18' 56,463250''S	46° 20' 16,025500''W	868,047	-2,80	870,847
M28	22° 18' 59,575230''S	46° 20' 15,892890''W	847,279	-2,80	850,079
ORIGEM	22° 18' 31,320000''S	46° 19' 50,910000''W	893,435	-2,79	896,220
	E a ust a	Autoria (2016)			

De posse das coordenadas geodésicas, obteve-se as coordenadas geocêntricas para os trinta vértices, conforme a Tabela 2, e, a partir dessas, calculou-se as coordenadas cartesianas locais, referidas ao SGL e acrescidas dos valores iniciais $e_0 = 150000$ m, $n_0 = 250000$ m e $u_0 = 896,220$ m. A Tabela 3 apresenta as coordenadas cartesianas locais (e, n, u) e as coordenadas topográficas locais (X, Y, Z), também determinas para os trinta vértices.

Tabela 2 –	Coordenadas	geocêntricas o	dos trinta	vértices em	consideração
		0			

Vértice	Xc (m)	Yc (m)	Zc (m)
93949	4076790,081	-4270430,569	-2407502,380
M1	4077296,239	-4270214,024	-2406936,483
M2	4077316,222	-4270226,396	-2406882,696
M3	4077356,241	-4270265,891	-2406780,735
M4	4077392,442	-4270303,653	-2406699,648
M5	4077451,260	-4270363,368	-2406560,631
M6	4077482,682	-4270391,979	-2406434,080
M7	4077518,962	-4270427,133	-2406338,224
M8	4077542,763	-4270455,745	-2406230,663
M9	4077566,204	-4270479,720	-2406111,041
M10	4077467,338	-4270629,005	-2406124,733
M11	4077324,941	-4270724,758	-2406116,639
M12	4077209,543	-4270814,406	-2406107,373
M13	4077069,876	-4271025,924	-2406126,653
M14	4077093,606	-4271048,861	-2406022,930
M15	4077117,860	-4271072,867	-2405882,288
M16	4077142,023	-4271097,069	-2405760,359
M17	4077174,049	-4271123,324	-2405639,472
M18	4076664,281	-4271573,699	-2405677,619
M19	4076622,082	-4271546,846	-2405813,042
M20	4076571,980	-4271504,359	-2405990,154
M21	4076523,065	-4271446,342	-2406274,834
M22	4076492,953	-4271417,574	-2406397,635

Página | 73

M23	4076421,044	-4271347,773	-2406616,575
M24	4076369,280	-4271300,919	-2406697,284
M25	4076316,073	-4271248,842	-2406864,920
M26	4076272,705	-4271208,201	-2407022,699
M27	4076225,947	-4271162,462	-2407117,343
M28	4076190,331	-4271119,644	-2407198,023
ORIGEM	4076964,935	-4270895,601	-2406411,290

Tabela 3 – Coordenadas Cartesianas Locais (e, n, u), referidas ao SGL, e Coordenadas Topográficas Locais (X, Y, Z), referidas ao STL, para os vinte e oito marcos em estudo, para a estação 93949 e para o ponto origem

Vértice	e (m)	n (m)	u (m)	X (m)	Y (m)	Z (m)
93949	150194,623	248817,059	887,497	150194,524	248817,166	887,585
M1	150710,270	249413,809	851,113	150710,176	249413,914	851,144
M2	150716,181	249472,205	851,740	150716,087	249472,310	851,767
M3	150717,858	249587,869	865,030	150717,763	249587,975	865,049
M4	150717,969	249682,744	882,646	150717,871	249682,852	882,669
M5	150719,281	249843,168	907,411	150719,181	249843,278	907,428
M6	150722,255	249976,340	898,591	150722,155	249976,449	898,607
M7	150724,223	250084,182	908,906	150724,123	250084,291	908,922
M8	150721,683	250197,787	902,427	150721,583	250197,896	902,446
M9	150722,084	250321,183	888,037	150721,986	250321,292	888,061
M10	150547,490	250323,593	929,979	150547,388	250323,700	929,996
M11	150378,372	250320,049	900,020	150378,272	250320,158	900,034
M12	150232,999	250322,989	882,777	150232,900	250323,099	882,784
M13	149985,921	250326,622	942,423	149985,822	250326,729	942,436
M14	149987,248	250435,100	933,558	149987,148	250435,207	933,578
M15	149988,216	250578,164	911,730	149988,116	250578,271	911,761
M16	149988,982	250703,945	897,077	149988,882	250704,054	897,131
M17	149994,019	250831,387	889,217	149993,920	250831,497	889,286
M18	149314,303	250786,144	879,442	149314,201	250786,255	879,562
M19	149302,321	250642,423	885,921	149302,219	250642,533	886,026
M20	149295,417	250453,769	892,714	149295,316	250453,878	892,804
M21	149300,095	250161,646	930,706	149299,999	250161,754	930,771
M22	149298,178	250032,244	938,833	149298,082	250032,353	938,896
M23	149294,361	249791,678	929,295	149294,264	249791,787	929,362
M24	149289,271	249690,577	895,509	149289,170	249690,686	895,581
M25	149286,742	249507,243	890,304	149286,641	249507,351	890,378
M26	149283,435	249338,747	895,295	149283,335	249338,856	895,385
M27	149281,196	249226,373	870,745	149281,093	249226,479	870,847
M28	149284,999	249130,639	849,965	149284,893	249130,742	850,079
ORIGEM	150000,000	250000,000	896,220	150000,000	250000,000	896,220
		Fonto: Aut	oria própri	2(2016)		

Página | 74

Fonte: Autoria própria (2016).

Realizando-se a análise pontual a partir dos resultados apresentados na Tabela 3, destaca-se, na Tabela 4, as discrepâncias (Δx , $\Delta y \in \Delta z$) entre as coordenadas cartesianas locais e as topográficas locais para cada um dos vértices em estudo. Analisando-se tais valores, observa-se que as diferenças existentes entre os dois sistemas em estudo são pequenas, porém consideráveis, uma vez que os erros médios em x, y e z, calculados a partir da média das diferenças Δx , $\Delta y \in \Delta z$ encontradas para os trinta vértices, giram em torno de 9,6 cm para o eixo x, 10,4 cm para o eixo y e 4,9 cm para o eixo z.

Calculando-se o Erro Posicional Tridimensional (EPT), também apresentado na Tabela 4, para a estação geodésica e para os vinte e oito marcos em estudo, a partir das diferenças pontuais tridimensionais (Δx , $\Delta y \in \Delta z$) entre os dois sistemas analisados, observa-se uma diferença média de 15 cm entre as coordenadas topográficas locais e as cartesianas locais para os vinte e nove vértices, bem como constata-se que os maiores valores de EPT são obtidos para os vértices mais distantes do vértice ORIGEM. Ainda na Tabela 4, observa-se que o Erro Planimétrico (EP), calculado para os vinte e nove vértices a partir das diferenças em x e y ($\Delta x \in \Delta y$) entre os sistemas analisados, não é influenciado pela distância do ponto à origem, sendo que o mesmo varia entre 14 e 16 cm para todos os vértices analisados.

Tabela 4 – Diferenças (Δx, Δy e Δz) encontradas entre as coordenadas cartesianas locais (e, n, u) e as coordenadas topográficas locais (X, Y, Z) para os trinta vértices em estudo e DO (Distância à origem), EP e EPT, calculados a partir das referidas diferenças, para os marcos analisados e para a estação 93949

Vértice	Δx (m)	Δy (m)	Δz (m)	EP (m)	EPT (m)	DO (m)
93949	0,099	0,107	0,088	0,146	0,171	1198,723
M1	0,094	0,105	0,031	0,141	0,144	920,786
M2	0,094	0,105	0,027	0,141	0,144	889,515
M3	0,096	0,107	0,019	0,143	0,145	827,615
M4	0,098	0,108	0,023	0,146	0,147	784,807
M5	0,100	0,109	0,017	0,148	0,149	736,059
M6	0,099	0,109	0,016	0,147	0,148	722,539
M7	0,100	0,109	0,016	0,148	0,149	729,012
M8	0,100	0,109	0,019	0,147	0,149	748,228
M9	0,098	0,109	0,024	0,147	0,149	790,248
M10	0,102	0,107	0,017	0,148	0,149	635,937
M11	0,100	0,109	0,014	0,147	0,148	495,571
M12	0,099	0,110	0,007	0,148	0,148	398,291
M13	0,099	0,106	0,013	0,146	0,146	327,036
M14	0,099	0,106	0,020	0,146	0,147	435,396
M15	0,100	0,107	0,031	0,146	0,150	578,393
M16	0,100	0,109	0,054	0,147	0,157	704,142
M17	0,100	0,110	0,069	0,148	0,164	831,519
M18	0,102	0,111	0,120	0,151	0,193	1043,320
M19	0,101	0,110	0,105	0,150	0,183	948,549
M20	0,101	0,109	0,090	0,148	0,174	838,203

Página | 75

M21	0,096	0,108	0,065	0,145	0,159	718,447
M22	0,096	0,109	0,063	0,145	0,158	702,663
M23	0,097	0,110	0,067	0,146	0,161	735,809
M24	0,100	0,109	0,072	0,148	0,165	775,212
M25	0,101	0,108	0,074	0,148	0,165	866,939
M26	0,100	0,109	0,090	0,148	0,173	975,049
M27	0,103	0,106	0,102	0,148	0,180	1056,013
M28	0,105	0,102	0,114	0,147	0,186	1125,605
ORIGEM	0,000	0,000	0,000	-	-	-

Pela Tabela 4, percebe-se que os valores de EP são menores que os valores de EPT, o que aponta que a altitude interfere nas discrepâncias encontradas entre os sistemas estudados. Um dos diversos fatores que influenciam na altitude dos vértices é o fato de que o *software* MAPGEO 2015 v1.0 fornece valores interpolados para a ondulação geoidal dos pontos. Soma-se a isso, o fato de que, para o SGL, considera-se um plano tangente à superfície terrestre no ponto origem do sistema e que é perpendicular a normal ao elipsoide, o qual possui valor correspondente à altitude ortométrica média dos pontos em questão, e, consequentemente, todos os demais valores encontrados para o STL, considerou-se para o eixo z os valores correspondentes às altitudes ortométricas dos referidos pontos, as quais são determinadas a partir do geoide, uma vez que, para esse sistema, adota-se uma superfície esférica denominada de superfície de nível médio do terreno, que é projetada sem deformação no Plano Topográfico Local.

A segunda análise realizada, apresentada na Tabela 5, se deu a partir de grandezas lineares, calculando-se três conjuntos de distâncias e, portanto, três valores de perímetro.

Distância	Cart. Locais (m)	Topo. Locais (m)	Geocêntricas (m)
d ₁₋₂	58,694	58,695	58,695
d ₂₋₃	115,676	115,677	115,676
d ₃₋₄	94,875	94,877	94,876
d 4-5	160,429	160,431	160,431
d 5-6	133,205	133,204	133,204
d ₆₋₇	107,860	107,860	107,861
d ₇₋₈	113,633	113,633	113,634
d ₈₋₉	123,397	123,396	123,396
d 9-10	174,611	174,615	174,615
d ₁₀₋₁₁	169,155	169,153	169,153
d ₁₁₋₁₂	145,403	145,402	145,402
d ₁₂₋₁₃	247,105	247,105	247,106
d ₁₃₋₁₄	108,486	108,486	108,487

Tabela 5 – Distâncias calculadas entre marcos consecutivos a partir das coordenadas cartesianas locais (Cart. Locais), topográficas locais (Topo. Locais) e geocêntricas, bem como os respectivos perímetros obtidos pela somatória de cada conjunto de distância

Página | 76

1453,129	1453,141	1453,129
		4.450.400
95,810	95,812	95,811
112,396	112,399	112,399
168,528	168,528	168,528
183,351	183,352	183,352
101,229	101,230	101,230
240,596	240,596	240,597
129,416	129,415	129,415
292,160	292,162	292,163
188,780	188,781	188,781
144,220	144,221	144,220
681,220	681,223	681,221
127,542	127,543	127,543
125,783	125,785	125,785
143,067	143,068	143,068
	143,067 125,783 127,542 681,220 144,220 188,780 292,160 129,416 240,596 101,229 183,351 168,528 112,396 95,810	143,067143,068125,783125,785127,542127,543681,220681,223144,220144,221188,780188,781292,160292,162129,416129,415240,596240,596101,229101,230183,351183,352168,528168,528112,396112,39995,81095,812

Pelos valores de perímetro obtidos, vê-se que a diferença linear entre o STL e o SGL é de 3,1 cm para a área em estudo, uma diferença pequena, mas que não pode ser desconsiderada para trabalhos de alta precisão. Salienta-se que a fórmula para cálculo da distância topocêntrica utilizando as coordenadas geocêntricas e levando em consideração as alturas geométricas dos vértices em questão, conforme é recomendado pelo INCRA (2013a), é válida e confiável, apresentando valores lineares próximos aos obtidos pela equação da distância euclidiana, sendo que o perímetro calculado a partir das coordenadas geocêntricas difere-se do perímetro obtido a partir das coordenadas locais em 2,1 cm, e em 1 cm do perímetro obtido a partir das coordenadas topográficas locais, considerando-se as aproximações efetuadas com três casas decimais.

Por fim, analisou-se a diferença entre a área obtida a partir das coordenadas topográficas locais e a partir das coordenadas cartesianas locais. Conforme a Tabela 6, nota-se que a diferença entre as duas áreas obtidas é de 8,736 m². Expressando-se a área em hectares, conforme exigência do INCRA (2013a), é observada uma diferença de 0,0009 hectares entre as áreas obtidas, o que contribui para comprovar a pequena discrepância entre os sistemas estudados.

Tabela 6 – Valores de área, em metros quadrados (m²) e em hectares (ha), calculados a partir das Coordenadas Topográficas Locais e das Coordenadas Cartesianas Locais

Coordenadas	A (m²)	A (ha)			
Topográficas Locais	1832294,664	183,2295			
Cartesianas Locais	1832285,928	183,2286			
Fonto: Autoria prápria (2016)					

Fonte: Autoria própria (2016).

CONCLUSÕES

Ao término do presente estudo, conclui-se que os dois sistemas analisados, Sistema Topográfico Local e Sistema Geodésico Local, não são compatíveis, uma vez que as análises realizadas a partir das grandezas pontuais, lineares e de superfície nos dois sistemas em estudo, apontam para uma divergência considerável quando na adoção dos sistemas para as aplicações descritas na NBR 14166/98 e no Manual Técnico de Posicionamento (INCRA, 2013a). Destaca-se que as diferenças lineares e de superfície entre os dois sistemas são significativas, o que contribui para a conclusão de que ambos os sistemas não são equivalentes e, desse modo, cada qual deve ser utilizado para uma finalidade, conforme recomendam as normas respectivas a cada um.

Pelas análises efetuadas, os vértices mais afastados da origem dos sistemas apresentam maior EPT. Afirma-se que fatores decorrentes da curvatura terrestre, do desvio da vertical e do próprio campo de gravidade terrestre interferem na determinação das altitudes ortométricas à medida que se afasta do ponto origem. Diante do exposto, recomenda-se a realização de trabalhos futuros nos quais seja realizada uma nova comparação das coordenadas obtidas nos dois sistemas de coordenadas locais, considerando-se vértices mais distantes do ponto origem e mais próximos às extremidades do Plano Topográfico Local, isto é, que distem cerca de 50 Km do ponto Origem, a fim de verificar a interferência da distância nos resultados obtidos, principalmente no que diz respeito ao EPT.

Ressalta-se, ainda, que embora a diferença observada entre as distâncias calculadas (distâncias euclidianas e a distância topocêntrica) seja pequena, não é desprezível, e, portanto, o recomendável em trabalhos de georreferenciamento de imóveis rurais, conforme o Manual Técnico de Posicionamento do INCRA, é a utilização da Equação 30 quando no cálculo do perímetro.

Por fim, considerando-se a aplicabilidade dos Sistemas Geodésico Local e Topográfico Local, conforme o Manual Técnico de Posicionamento do INCRA e a NBR 14166/98, bem como as análises efetuadas que demonstram uma pequena, mas considerável diferença entre os dois sistemas de coordenadas em estudo, recomenda-se que, para trabalhos práticos de georreferenciamento de imóveis rurais, adote-se o Sistema Geodésico Local, e, em levantamentos cadastrais municipais, recomenda-se a adoção do Sistema Topográfico Local, conforme exigência da NBR 14166/98 quando na implantação da Rede de Referência Cadastral, assumindo-se, para o eixo z, as próprias altitudes ortométricas dos vértices em questão, o que resulta em dados altimétricos mais confiáveis.

Comparative analysis of the coordinates in the Local Geodetic System and in the Local Topographic System

ABSTRACT

One of the important activities of professionals in Geodesy consists of the transformations between coordinate systems and, depending on the purpose, one should resort to one or another system. The local coordinate systems provide greater precision in the implementation of engineering works and cadastral works, among which stands out the Local Topographical System, adopted in municipal surveys for registration purposes, according to NBR 14166/98, and the Local Geodetic System applied when the georeferencing of rural properties, according to the Positioning of Technical Manual of NTGIR (INCRA, 2013a). In order to perform a comparative analysis of the obtained coordinates in the three-dimensional local coordinate systems, is adopted as an object of study, twenty-eight marks located on IFSULDEMINAS and one geodetic stations approved by the IBGE, which had their geodetic coordinates obtained by positioning by GNSS, with static and static fast methods. Conclude, from the obtained local coordinates and the specific, linear and surface comparisons realized, that both systems have a small divergence however significant, which means that the same are not considered equivalent and, therefore, the applicability of each one must comply with the requirements of technical standards.

KEYWORDS: GNSS. Geodetic System. Topographic System. Local coordinates.

REFERÊNCIAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 14166: Rede de Referência Cadastral Municipal - Procedimento. Rio de Janeiro, 1998. 23 p.

HOFMANN-WELLENHOF, B.; LICHTENEGGER, H.; WASLE, E. **GNSS – Global Navigation Satellite Systems, GPS, GLONASS, Galileo and more**. Springer-Verlag Wien, 2008. 501p.

IBGE. Instituto Brasileiro de Geografia e Estatística. Sistema Geodésico Brasileiro: Banco de Dados Geodésicos. Disponível em: <http://www.ibge.gov.br/home/geociencias/geodesia/bdgpesq_googlemaps.php #tabela_dados>. Acesso em: 27 abr. 2016.

INSTITUTO NACIONAL DE COLONIZAÇÃO E REFORMA AGRÁRIA. **Manual Técnico de Posicionamento: Georreferenciamento de Imóveis Rurais**. 1 ed. Brasília, 2013a. 34 p.

INSTITUTO NACIONAL DE COLONIZAÇÃO E REFORMA AGRÁRIA. **Norma Técnica para Georreferenciamento de Imóveis Rurais**. 3 ed. Brasília, 2013b. 4 p.

MONICO, J.F.G. **Posicionamento pelo GNSS: descrição, fundamentos e aplicações**. 2. ed. São Paulo: Editora UNESP, 2008. 477p.

RAPP, R. H. Geometric Geodesy Part I. Columbus, Ohio: The Ohio State University, 1991. 178 p.

VEIGA, L. A. K.; ZANETTI, M. A. Z.; FAGGION, P. L. **Fundamentos de Topografia**. Paraná: UFPR - Universidade Federal do Paraná, 2012. 274 p.

VENTURI, J. J. Álgebra Vetorial e Geometria Analítica. 9. ed. Curitiba: UFPR, 1949. 242 p.

Página | 80

Recebido: 12 ago. 2016

Aprovado: 21 mar. 2017 DOI: 10.3895/rbgeo.v5n1.5420

Como citar: SIMÕES, D. P.; ALBARICI, F. L.; BORGES, P. A. F. Análise comparativa das coordenadas no Sistema Geodésico Local e no Sistema Topográfico Local. **R. bras. Geom.**, Curitiba, v. 5, n. 1, p. 062-081, jan/mar. 2017. Disponível em: https://periodicos.utfpr.edu.br/rbgeo. Acesso em: XXX.

Correspondência:

Débora Paula Simões

Sítio Real, s/n, Bairro Guabiroba, CEP 37578-000, Bueno Brandão, Minas Gerais, Brasil **Direito autoral:** Este artigo está licenciado sob os termos da Licença Creative Commons-Atribuição 4.0 Internacional.

