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The study of articulated robots in higher education necessarily goes through the 
development of their kinematic models. The inverse kinematic model is usually described 
algebraically, although this representation is often difficult to obtain. Thus, the use of 
genetic algorithms in teaching robotics can be very attractive, since they allow students to 
easily develop models and predict the behavior of robots before their formal 
development. This way, the results of this work present a relatively fast way to simulate 
the inverse kinematic model, allowing the designer to have a broader view of the 
structure of a robot, coming to identify points that must be corrected or that can be 
optimized. It can be concluded that the use of genetic algorithms in robotics teaching is 
viable, having as main advantages their easy computational implementation and precision 
in the representation of kinematic models. 
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INTRODUCTION 

The motion described by a manipulator robot can be represented by its direct 
and inverse kinematic models, as described in Craig (2017). Obtaining the direct 
kinematic model is relatively simple, since it is defined by a set of transformations 
among the reference systems of the degrees of freedom (DOF) or joints. Through 
this model it is possible to determine the position of the tool on the free end of 
the robot being known the positions of its joints. 

The inverse kinematic model, in turn, allows the determination of the state of 
the joints of a robot according to the desired position for its tool. In this way, 
when a trajectory for the tool is defined, it is possible to determine the set of joint 
positions that will allow the robot to describe the desired motion (MILLER, 2017) 

Obtaining the inverse kinematic model, however, tends to be more complex 
than obtaining the direct kinematic model, since it involves the solution of a 
system of non-linear equations that can admit more than one solution. Even in 
relatively simple cases, as for the two DOF planar robot described below, the 
definition of the inverse kinematic model is not trivial. 

In this way, being able to predict the behavior of a robot in a relatively simple 
way, before the formal development of its inverse kinematic model, can become a 
relevant factor when teaching robotics in higher education. Through the use of 
genetic algorithms (GAs) it is possible to simulate the behavior of a robot, 
determining with relative precision the state of its joints in function of the desired 
position for its free end, allowing design failures to be detected, as well as the 
identification of possible points for optimization. 

Thus, this paper aims to present the theme of GAs in the context of 
simulation in robotics, trying to present a generic solution capable of representing 
the behavior of inverse kinematic models of articulated robots in a practical, 
efficient and relatively simple way, with a view to explore opportunities of 
optimization and teaching in robotic projects. 

DIRECT AND INVERSE KINEMATICS FOR THE MOTION OF A ROBOT 

The study of the direct and inverse kinematic models in robotics can be 
introduced, in a simple way, through a planar manipulator robot, as shown in 
Figure 1. 

In the structure of Figure 1 there is a manipulator robot with 2 DOF, being its 
lower end attached to the referential coordinate system and its upper end (tool) 
free to move over the Cartesian plane. This robot consists of two arms with 
lengths L1 and L2, with each arm being associated with a rotational joint, whose 
rotation angles are ϴ1 and ϴ2, respectively. The free end of this robot is on the 
(XP,YP) point of the plane. 
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Figure 1 – Structure of a planar robot with 2 DOF. 

 

(Source: Elaborated by the authors) 

The direct kinematic model of this manipulator, which indicates the position 
of the free end of the robot according to the angles of the rotational joints, can be 
represented quite simply by equations (1) and (2). 

 

𝑋𝑃 = 𝐿1. 𝑐𝑜𝑠 𝜃1 + 𝐿2. 𝑐𝑜𝑠 𝜃1 + 𝜃2             (1) 

 

𝑌𝑃 = 𝐿1 . 𝑠𝑖𝑛 𝜃1+ 𝐿2. 𝑠𝑖𝑛 𝜃1 + 𝜃2             (2) 

 

In turn, the inverse kinematic model of this robot, which indicates the angles 
ϴ1 and ϴ2 of the joints in terms of the desired position for the tool, can be 
described, according to Craig (2017), through equations (3) and (4). 

 

𝜃2 = ± 𝑐𝑜𝑠−1  
𝑋𝑃
2+𝑌𝑃

2−𝐿1
2−𝐿2

2

2.𝐿1.𝐿2
              (3) 

 

𝜃1 = 𝑡𝑎𝑛−1  
𝑌𝑃 . 𝐿1+𝐿2.𝑐𝑜𝑠 𝜃2 −𝑋𝑃 .𝐿2.𝑠𝑖𝑛𝜃2

𝑋𝑃. 𝐿1+𝐿2.𝑐𝑜𝑠 𝜃2 +𝑌𝑃 .𝐿2.𝑠𝑖𝑛𝜃2
            (4) 

 

In this model, the angle ϴ2 can assume positive or negative values, depending 
on the position of the robot’s elbow (up or down). 

It is remarkable, by observing equations (3) and (4), that the inverse 
kinematic model actually has considerable complexity, even for a robot that has 
only 2 DOF in a plane. Thus, as the number of DOF of a robot increases, the 
difficulty to obtain its inverse kinematic model is also significantly increased. 

One way to simulate the inverse kinematics of a robot without the explicit 
definition of this model is the use of GAs. These algorithms have great vocation 
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for the solution of optimization problems, as this model can be treated. In this 
way, a GA can be built in a way that, given an initial estimate for the values of ϴ1 
and ϴ2 and a target function (get as close as possible to the coordinates XP and 
YP), this estimate can be refined towards an optimal solution. By means of this 
strategy, in a very simple way, the GA can be initially fed by a random estimate for 
the values of ϴ1 and ϴ2, evolving this solution until a certain condition of 
minimum positioning error. For example, the relative distance between the 
desired position for free end of the robot, (XP,YP), and the value for (XP’,YP’) 
determined from the optimization of the estimates for ϴ1 and ϴ2. 

This way, through the use of GAs, it is possible to determinate the inverse 
kinematics of a robot without the formal specification of its model, allowing 
certain behaviors to be identified by the genetic algorithm. Thus, the robotics’ 
study proposed here is driven to the use of GAs, as an alternative to conventional 
methods for the determination of the inverse kinematic model of a manipulator 
robot. 

FUNDAMENTALS OF GENETIC ALGORITHMS 

The use of genetic algorithms in optimization problems was initially proposed 
in Holland (1975), being popularized through Goldberg (1989) and Haupt (2004). 
Briefly, it can be said that GAs are an analogy to Charles Darwin's Theory of 
Evolution of Species (DARWIN, 2009), which, in turn, began with the integration of 
concepts between natural selection and genetics carried out by Gregor Mendel 
(MILLER, 2009). In summary, in a computational environment, we aim to search 
for the evolution of a given solution to a problem, from an initial estimate, 
possibly rough, to an optimal one. To do so, the optimization process requires a 
search space, formed by “individuals” of a “population”, where the optimal 
solution is sought for the studied case, as well as an objective function, which 
leads to the pursuit towards the best possible solution (BING, 2016; GUPTA, 2016; 
KRAMER, 2017). 

In this context, the use of GAs implies a stochastic process, where possible 
solutions are grouped into a population, being all of which evaluated 
simultaneously, with higher scores attributed to the best individuals, i.e., to the 
best solutions. Thus, possible solutions to the problem are treated as individuals 
within a population of solutions. 

In turn, the evolution of the population towards optimized solutions passes 
through events where individuals combine with each other, in “crossover” 
processes, or suffer “mutations”, similarly to what occurs in biological 
populations. Such evolution gives rise to new generations that should represent 
better solutions to the problem addressed. 

THE BINARY GENETIC ALGORITHM 

The computational implementation of a GA is relatively simple, but it is 
interesting to code the individuals of a population in a binary representation, for 
the proper application of the algorithm proposed here. Thus, from the initial 
population of individuals that constitutes a space of search towards the best 
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solution of the problem, as long as a certain evolutionary criterion is not reached, 
the following steps must be repeated. 

 1. Each of the individuals of the population is evaluated, assigning to the 
same grades that represent their respective “fitness” for the solution of 
the treated problem. Such grades are obtained from the objective 
function, which represents the north for the best solution. The higher the 
score of an individual, the closer it is to the optimal solution. 

 2. The best individuals of the population are selected, so that they can be 
combined in pairs determined by sortition, in a process called 
“crossover”. Through these crossings, individuals, in pairs, exchange part 
of their bits, giving rise to a new generation for the population. 

 3. Each individual of the new generation is subjected to an eventual 
“mutation”. In this process, bits of a particular individual can change their 
value, upon occurrence of a low probability event. 

 4. “Elitism” is applied in the new generation. This implies bringing the best 
individuals of the current generation to the new one, thus preserving the 
best solution obtained so far. 

 5. This procedure is repeated again from the initial step until the expected 
evolutionary criteria are met, that is, the population or one of its 
individuals reaches the limits of the optimal solution. 

The fitness of an individual xi of the population can be represented by a 
function f(xi), which indicates how close this individual is to the optimal solution 
to the studied problem. Thus, in a population composed by N individuals, each of 
them will have its own fitness defined through f(x). 

The analysis and comparison of the fitness of the individuals from a 
population will establish the probability p(xi) that an individual i will have to 
generate descendants, through the crossover process. In the case where this 
probability is directly proportional to the numerical value of f(x), then it can be 
calculated by Equation (5). 

 

𝑝 𝑥𝑖 =
𝑓 𝑥𝑖 

 𝑓 𝑥𝑘 
𝑁
𝑘=1

               (5) 

 

If the probability increases as the numerical value of the objective function 
tends to zero, as is the case of the model discussed in this paper, then the 
probability of selecting an individual shall be calculated as shown in Equation (6). 

 

𝑝 𝑥𝑖 =
1− 

𝑓 𝑥𝑖 

 𝑓 𝑥𝑘 
𝑁
𝑘=1

 

 𝑁−1 
              (6) 

 

The crossover procedure, to which individuals with better fitness will be 
subjected, can be understood from Figure 2. 
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Figure 2 – Crossover procedure between two individuals of a population. 

 

(Source: Elaborated by the authors) 

Prior to the crossover, a “cut point” must be defined at random, which will 
indicate the region to be exchanged between the two individuals. Through Figure 
2 it can be observed that, from the cut point, there is the exchange of information 
between the pair. 

In turn, the mutation procedure is represented by Figure 3. 

Figure 3 – Mutation occurred in one of the individuals of the population. 

 

(Source: Elaborated by the authors) 

Mutation is a random event of low probability, which may occur to reverse 
the value of one or more bits of individuals in a given population. When applying 
the mutation procedure in a GA, care must be taken to do not make this process 
an event with high frequency, which could cause degeneration of the solution 
represented by the group. 

In an GA, “elitism” aims to preserve the best characteristics of the current 
generation, transporting it to the next generation. Specifically, the fittest 
individual (or those who are most fit) passes directly from the current generation 
to the next generation, without undergoing any modifications. 
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GENETIC ALGORITHMS AND THE KINEMATICS OF THE PLANAR ROBOT 

This section describes the adopted procedure regarding the use of a GA to 
solve the inverse kinematic problem of a planar robot. The solution to the model 
described at the beginning of this paper requires the calculation of joint angles, ϴ1 
and ϴ2, which satisfy the positioning of the free end of the robot at a point on the 
Cartesian plane. 

The objective function to be used in the optimization process will be the 
distance between the position obtained with the values ϴ1 and ϴ2 applied to 
equations (1) and (2), (XP’,YP’), and the position (XP,YP) arbitrarily specified for the 
end of the robot. This function is represented by Equation (7). 

 

𝑑 =   𝑋𝑃 − 𝑋𝑃
′  2 +  𝑌𝑃 − 𝑌𝑃

′ 2            (7) 

 

For the implementation of the GA, as previously described, it is necessary to 
code the variables ϴ1 and ϴ2 in a binary format. Considering that the values of 
these angles will be constrained to the interval between 0 and 2π, we opted for a 
coding in ten bits, being the three most significant bits reserved to the integer 
part and the other seven bits reserved to the fractional part of the number. Figure 
4 illustrates this condition. 

Figure 4 – Binary representation adopted for the angles ϴ1 and ϴ2. 

 

(Source: Elaborated by the authors) 

The computational implementation of the GA also requires that an individual 
be represented by the following data structure. 

 

Structure Individual 

{ 

Real  ϴ1; 

Real  ϴ2; 

Real  fitness; 

Real  selection probability; 

}; 
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In this structure, ϴ1 and ϴ2 define the solution represented by the individual, 
“fitness” synthesizes the grade assigned to this solution and “selection 
probability” represents the probability of the individual being selected for the 
crossover procedure. 

Fitness will be calculated by Equation (7), being remembered that, because it 
represents a distance, the less its numerical value, the greater will be the fitness 
of the individual. This implies the use of Equation (6) for the calculation of the 
selection probability of an individual. 

In turn, a population with N individuals will describe the space for the search 
and evolution towards the optimal solution. This population is described as a 
vector with N individuals in the computational implementation of this algorithm. 

 

Individual  Current_Generation[N]; 

 

Thus, from an initial generation with N individuals, the following algorithm 
can be used to determine future generations, until an optimal solution is reached. 

 

 1. Select, at random, “N” individuals for the 1st. generation of the 
population. If there are individuals whose values of ϴ1 and ϴ2 are 
outside the permitted limits (0 ≤ ϴ < 2π), replace these individuals for 
others. 

 2. Calculate the fitness of each individual, through equations (1), (2) and 
(7). 

 3. Calculate the selection probability of each individual, through 
Equation (6). 

 4. Find the individual with higher fitness in this generation. 

 5. While the higher fitness does not meet the criterion of stop: 

 a. To start a new generation, repeat “N/2” times: 

 i. Select, by sortition, based on the selection 
probability, two individuals of the current generation. 

 ii. Perform the crossover of the two selected 
individuals. 

 iii. Store the two individuals generated by crossover in 
the new generation. 

 iv. End. 

 b. Submit all individuals of the new generation to an eventual 
mutation process. 

 c. If in the new generation there are individuals whose values of 
ϴ1 and ϴ2 are outside the permitted limits (0 ≤ ϴ < 2π), 
replace these individuals for the fittest of the current 
generation. 
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 d. Select the less fit individual of the new generation and 
replace it with the fittest individual of the current generation. 

 e. Calculate the fitness of each individual of the new generation. 

 f. Calculate the selection probability of each individual of the 
new generation. 

 g. Select the fittest individual of the new generation. 

 h. Make the new generation be the current generation. 

 i. End. 

 6. End of the algorithm. 

 

Some points of this algorithm are highlighted at next. A considerable 
advantage of this is the fact that it does not require a predetermined solution so 
that it can evolve towards an optimal solution. In this way, Step (1) of the 
algorithm allows us to create a random initial generation as a starting point. As 
the only constraint, consider that the values of ϴ1 and ϴ2 of this first generation 
must be within the allowed range (0 ≤ ϴ < 2π). 

Step (2) defines the individual fitness from the values of ϴ1 and ϴ2. Through 
equations (1) and (2), the values of these angles will determine the position 
(XP’,YP’) represented by this solution. In turn, through Equation (7) the distance 
between this position and the one desired for the free end of the robot (XP,YP) can 
be calculated. This distance represents the fitness of the individual, being better 
the lower is its numerical value. 

The probability of selecting a particular individual for crossover, pointed in 
Step (3), derives from its fitness, that is, from the distance that its respective 
solution represents. This probability, calculated through Equation (6), takes into 
account the fitness of the other individuals, having a greater probability of 
selection the one who is at a shorter distance from the objective (XP,YP). Given its 
relative behavior, the sum of the probabilities of each individual should be equal 
to 1. 

Finding the individual with the highest fitness, as provided in Step (4), allows 
us to verify how far the simulation is from its stopping criterion. This criterion, 
pointed out in Step (5), can be adjusted in several ways. In the simulation 
developed in this work, it was chosen to establish as a criterion of stopping for the 
evolution of the population the highest individual fitness, with numerical value 
inferior to a pre-established limit. Other stop criteria to be considered may be a 
given number of generations, loss of diversity of a population or convergence to a 
given solution after a certain number of generations (HOLLAND, 1975). 

The selection of individuals for crossover by sortition, indicated in Step (5.a.i), 
can be interpreted through the format of a “lottery”, based on the fitness and on 
the probability of an individual being selected. In this model of sortition, a set of 
“lottery tickets” is attributed to each individual of the population, which is 
proportional to its probability of selection. Thus, through the draw of the “winning 
ticket”, it is defined the individual (“owner of the ticket”) that will be selected for 
the crossover. 
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The crossover, indicated in Step (5.a.ii), is the event that will trigger the birth 
of a new generation, different from the current. Moreover, this new generation 
may pass through a mutation process, as provided in step (5.b), increasing the 
diversity of the population. As previously indicated, mutation is an event that 
should be used with caution in GAs, since high mutation rates may lead to 
degeneration of the population and, therefore, the loss of the solution that it 
represents. 

Crossover and/or mutations are procedures that may eventually give rise to 
“degenerate” individuals, that is, whose values of ϴ1 and ϴ2 are outside the 
permitted limits. This kind of occurrence may be circumvented through the 
replacement of the degenerate individuals by the fittest individuals from the 
current generation, as indicated in Step (5.c). In this same sense, with or without 
degenerate individuals, it is convenient to preserve the fittest individual of the 
current generation (elitism). To do so, Step (5.d) proposes to replace the less fit 
individual of the new generation with the fittest of the present generation. 

Once the new generation is defined, the fitness and the selection probability 
of each individual must be recalculated. Finally, the new generation is made the 
current generation and, if the stop criterion has not been reached, the procedures 
are repeated for the creation of another generation. 

RESULTS AND DISCUSSION 

The model presented throughout this text was implemented using “C” 
language. The working environment where it was developed is “Code::Blocks”, 
which is free to use and friendly enough for undergraduate students in 
engineering courses. The basic code developed in classroom was made available 
in eduCapes Portal, under the address 
http://educapes.capes.gov.br/handle/capes/561163.  

It was simulated a planar robot having his arm, L1, length of five units and his 
forearm, L2, four units. The angles ϴ1 and ϴ2, which define the solution 
represented by an individual, were encoded in ten bits, being three bits dedicated 
to the representation of the integer part of the angle and seven bits destined to 
the representation of the fractional part. It should be stressed that the angles are 
restricted to the interval 0 ≤ ϴ < 2π. 

In the developed implementation, a population of ten individuals was used. 
The cut point for the crossover is set at random, each time this operation is 
performed, being limited to a maximum of 60% of the bits, counted from the least 
significant bit. In turn, the probability of mutation was limited to 1%, in order to 
avoid population degeneration. 

The simulation in question consisted of the displacement of the free end of 
the robot, according to a linear trajectory described by Equation (8). 

 

𝑌𝑃 = 0.5 × 𝑋𝑃 + 2               (8) 

 

This trajectory was limited to the interval -2 ≤ XP ≤ 2, with a calculation step 
equal to 0.2 units. 
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The stop criterion used to finish the calculation of the angles ϴ1 and ϴ2 
associated with a position (XP’,YP’) consists of obtaining a distance of less than 
0.020 units in relation to (XP,YP). 

Figure 5 shows subplots for the trajectory generated by the simulation. The 
solid line represents the desired path, while dashed lines show the tracks 
obtained through GA. 

Figure 5 – Subplots for the generated paths in the simulation. 
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(Source: Elaborated by the authors) 

The existence of two solutions is justified by the fact that the free end of the 
planar robot can reach a certain point in two distinct ways: with its “elbow” 
pointing up or down. Figure 5 also allows us to observe that the trajectories 
obtained from the simulation are significantly close to the desired trajectory. 

Regarding the simulation itself, the results were obtained by predicting, in the 
algorithm, the presence of crossover, mutations and elitism. However, for testing 
purposes, the simulation was also performed using only crossover and elitism and 
only mutations and elitism. These variations led to some interesting empirical 
observations, which are presented bellow. 

  When applied only crossover and elitism, without mutations, it was 
noted that the algorithm hardly converged toward the stopping 
criterion. Such an occurrence can be explained by the fact that the 
crossover used reached only the least significant part of the bits and 
did not allow the exchange of these in a ratio higher than 60%. Thus, 
with the most significant bits preserved, the algorithm tends not to 
converge. Such a situation can be circumvented if a crossover with 
more than one cut point is used. 

  When used mutation and elitism, without crossover, it was noticed 
that the algorithm presented slow convergence, but the stopping 
criterion was achieved most of the time. This occurrence can be 
explained by the fact that mutation, although a phenomenon of low 
probability, can occur in all bits of the individual. Thus, the 
occurrence of mutations in the most significant bits of the individual, 
associated with elitism, allowed the algorithm to show convergence. 
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  The combination of crossover, mutation and elitism causes the 
algorithm to present its best results, with convergence occurring, 
most of the times, after a few dozen iterations. 

In concern the use in robotics classes, it was adopted a problem based 
learning methodology (PBL). Students had previous knowledge about genetic 
algorithms, which were studied in Artificial Intelligence discipline. This way, when 
presented to the direct/inverse kinematic problem, they were instigated to 
develop alternative approaches to the algebraic solution. The use of a genetic 
algorithm came from insights discussed among students and the teacher 
(moderator). At next, the implementation was discussed by the group, that 
decided to use C language to build the prototype. 

CONCLUSIONS 

The results of this study demonstrate that the use of genetic algorithms for 
the solution of the inverse kinematic problem of robotics is feasible, especially in 
situations where the explicit determination of the inverse model is costly. A 
considerable advantage for the use of a GA in this type of problem is its relatively 
simple computational implementation. The presented algorithm is also 
parallelizable, being able to be fragmented in a cluster of computers, reducing the 
calculation time to obtain more precise solutions. Regarding the precision of the 
algorithm, it depends heavily on the number of digits used for the binary encoding 
of an individual. In the example presented here, encoding through ten bits 
ensured that the error of the calculated trajectory was less than two hundredths 
of a unit. Another significant advantage in the use of GAs in optimization 
problems is their high flexibility, which makes them easily adaptable to other 
robot models or even other types of optimization problems. 
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Uso didático de algoritmos genéticos: um 
modelo para o ensino de robótica 

RESUMO 

  O estudo de robôs articulados no ensino superior passa necessariamente pelo 
desenvolvimento de seus modelos cinemáticos. O modelo cinemático inverso é 
geralmente descrito algebricamente, embora essa representação seja frequentemente 
difícil de obter. Assim, o uso de algoritmos genéticos no ensino de robótica pode ser muito 
atraente, pois permite que os alunos desenvolvam facilmente modelos e prevejam o 
comportamento dos robôs antes de seu desenvolvimento formal. Desta forma, os 
resultados deste trabalho apresentam uma maneira relativamente rápida de simular o 
modelo cinemático inverso, permitindo que o projetista tenha uma visão mais ampla da 
estrutura de um robô, chegando a identificar pontos que devem ser corrigidos ou que 
possam ser otimizados. Pode-se concluir que o uso de algoritmos genéticos no ensino de 
robótica é viável, tendo como principais vantagens sua fácil implementação 
computacional e precisão na representação de modelos cinemáticos. 

PALAVRAS-CHAVE: Algoritmos evolucionários. Otimização de processos. Simulação 
computacional. 
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