

Brazilian journal of Science teaching and Technology, Ponta Grossa, v. 15, p. 1-19, 2022.

Page | 1

 https://periodicos.utfpr.edu.br/rbect

A simulator to support assembly language
teaching

ABSTRACT

Rene Pegoraro
rene.pegoraro@unesp.br
0000-0003-0314-8660
Universidade Estadual Paulista, Bauru,
São Paulo, Brasil.

Marcelo Nicoletti Franchin
marcelo.franchin@unesp.br
0000-0003-3021-9874
Universidade Estadual Paulista, Bauru,
São Paulo, Brasil.

 This article describes a simulator of a simple hypothetical processor used for introducing
assembly language concepts to high school and university students. The simulator,
developed to be used as a didactic tool, offers to students, in a graphical interface, a model
of how a computer works from the point of view of low-level programming. In this tool,
users load the program in machine language and visualize the changes resulting from its
execution in the processor's memory and registers. Considering the importance of
understanding the difference between assembly language and machine language, students
are instructed to write their code in assembly language and then to obtain the machine
language. The assembly process begins manually and then it is done through an assembler
program. Manual assembly helps to explain some concepts related to the generation of
executable code hidden in integrated development environments. Although the tool
simulates a simple hypothetical processor, it was built following the instruction syntax used
in Intel's 32-bit architecture (IA-32), allowing students to use the concepts learned to
understand other assembly languages on real computers. This tool is used at the beginning
of the Assembly Language course in the Computer Science Program at Sao Paulo State
University, located in Bauru/SP/BR. Data collected over eight years, four of them using the
simulator, suggest the pass rate of students has increased significantly.

KEYWORDS: Assembly Language. Simulator. Computing Teaching.

about:blank
about:blank
about:blank
about:blank
about:blank

Brazilian journal of Science teaching and Technology, Ponta Grossa, v. 15, p. 1-19, 2022.

Page | 2

INTRODUCTION

Most students and professionals prefer technological tools that facilitate and
speed up development work in the field of computing. Oftentimes, however, they
ignore the internal structure and functioning of these technologies, which have the
potential to boost the use of such tools. Thus, despite this preference for high-level
programming, specialized libraries, human-machine interfaces, and data
abstraction mechanisms, as well as the emphasis on understanding computers as
machines represented by abstract models, assembly language remains important
for it is where many of the mechanisms within those tools are built. Assembly
language appears in several courses such as: i) Introduction to Computing, relating
high-level language with assembly language and machine language, data encoding
and subroutine’s call and return mechanisms; ii) Compilers, transforming high-
level programming languages into assembly or machine language; iii) Computer
Architecture and Organization, starting from the organization to the execution of
the machine language in the architecture; and iv) Operating Systems, in situations
that require low-level instructions, programmed with assembly language, in which
it is not possible to obtain high execution performance when coding in high-level
languages, such as process context switching or service calls of the system. This
language also appears in the curriculum guides of the Association for Computing
Machinery (ACM) for undergraduate courses in Computer Science (ACM/IEEE,
2013) and Computer Engineering (ACM/IEEE, 2016), which reinforces its relevance.

The Assembly Language course is usually taught in the second or third term of
Computing Programs, after a term in which students learn programming in some
high-level language. Despite the complexity of this course, it should not discourage
beginner students in the field of computing.

In this sense, programming tools can be used to simplify learning, encourage,
and motivate students. Although tools such as integrated programming
environments with visualization of registers and processor memory sections,
microcontroller programming, and simulators and emulators of complex or
hypothetical real devices are used in teaching, they tend not to focus on the
simplicity of understanding the functioning of desirable low-level processor
programming concepts in a teaching tool.

This article, then, introduces AS.SIM (ASsembly SIMulator), used to teach
students the fundamentals of assembly language and machine language
programming. It consists of four eight-bit registers, two indicators (flags), three
control buttons and 256 memory locations, all of them presented simultaneously
in a single fixed window, configuring a simplified model of a processor.

After this Introduction, the article is organized as follows: Section 2 presents a
review of some related simulators used for teaching assembly language; section 3
describes the characteristics of the AS.SIM simulator and its use; section 4 shows
the approach used in the Computer Science program at UNESP Bauru; section 5
indicates the results obtained with the use of this tool; and the conclusion section
offers some final remarks.

Brazilian journal of Science teaching and Technology, Ponta Grossa, v. 15, p. 1-19, 2022.

Page | 3

TOOLS FOR TEACHING ASSEMBLY LANGUAGE

A vast array of tools can be used to teach assembly language, ranging from
environments aimed at professional development and testing of programs on real
processors, to hypothetical processor simulators for teaching computer
architecture and assembly language.

With a focus on teaching assembly language, it is expected that the tool will
allow students with little experience to learn a simple architecture that is the basis
for programming a real processor as well as provide a simple interpretation of the
data being presented. In addition, the tool is expected to offer ease of use,
availability in operating systems common to students of computing courses, and
visualization of a step-by-step execution of instructions in a program. Complex
environments with multiple windows and unnecessary information for beginner
students can lead them to try to understand information that is not relevant for
that stage, diverting their attention and making it difficult to learn the content at
hand. In this sense, a simple and clear interface that presents nothing but memory,
registers and primary flags, encourages students to focus on understanding low-
level programming. Thus, for beginners, professional development environments
are discarded in order for simulators with simpler architectures to remain.

It is highly desirable that the knowledge acquired at the beginning of the
course not be lost when students advance their learning, the used architecture be
introductory to one of the most common architectures in the program in which
students are inserted, and the tool accompany part of a real existing architecture.
Therefore, for AS.SIM, we opted for 32-bit Intel Architecture (IA-32) (INTEL, 2016).

A study conducted by Nikolic, Radivojevic and Djordjevic (2009) comparing 28
simulators shows that almost all of them make programming in machine language
possible; however, the didactics of these simulators in programming assembly
language are not addressed. Another study, this time by Esmeraldo et al. (2019),
compares 16 simulators using seven metrics, including one specific for assembly
language. Of these, the CompSim, MarieSim, SIMAEAC, SimuS were chosen for
beginner students in view of their simplicity.

CompSim (ESMERALDO; LISBOA, 2017) includes a graphical interface
integrated to a simulated hardware platform, which allows to simplify the
configuration of hardware components, processor programming, and execution
and performance evaluation of new computer systems. In the low-level
programming window, one can see the CPU's internal registers, the cache memory,
part of the main memory, and the assembly language code. Some registers can be
accessed through memory locations. Indirect addressing to memory happens only
by STI and LDI instructions, in which a memory location indicates the location to
be manipulated. There are only two types of jumps, JN (jump if negative) and JZ
(jump if zero).

MARIE, that is, Machine Architecture that is Really Intuitive and Easy, was
developed to understand the basics of a fully functional von Neumann architecture
with an uncomplicated set of instructions. MARIE is the basis for the MarieSim
simulator. All system components, including registers, instructions and memory,
are simultaneously visible on the screen. The 13 instructions are composed of two
bytes fixed size and are specific to MARIE. In the main window, one can see the
CPU's internal registers, part of the 4k main memory, and the assembly language

Brazilian journal of Science teaching and Technology, Ponta Grossa, v. 15, p. 1-19, 2022.

Page | 4

code. Unlike many conventional architectures, it does not use flags and conditional
jumps consider the accumulator value to be less than, equal to or greater than
zero. (NULL; LOBUR, 2003).

SIMAEAC, i.e. Academic Simulator for Teaching Computer Architecture,
implements the 8085’s processor architecture, through the following types of
instructions: logical, arithmetic, stack manipulation, subroutine call and return,
conditional and unconditional branches, and data transfer between registers and
between registers and memory. It displays registers A (Accumulator), B, C, D, E, H,
L, PC and SP, all composed of 8 bits, and 5-bit flags. A reduced memory area, from
00 to 8F of addressing, is fully presented in the interface without the need to scroll
the sidebar. As a result, the visualization of the cell in which the instruction being
executed is found is always available. With this feature, instructions that handle
memory, in addition to the SP and PC registers, must handle 8 bits. (VERONA;
MARTINI; GONÇALVES, 2009).

Silva and Borges (2016) present the SimuS simulator and the hypothetical
Sapiens processor, which is the evolution of the Neander-X processor that presents
31 instructions with up to three bytes each. Some of the main improvements,
among many, are the 64K of memory, the indirect addressing, the stack and
specific instructions for calling and returning subroutines. Its interface is simple:
the main screen presents an area for typing the assembly language; buttons to run,
step by step and stop; the registers; the flags; part of the 64k of memory; and the
entry and exit. The loading of the program into the memory happens directly
through assembling the code typed in assembly language. Weber (2001 apud
SILVA; BORGES, 2016) define the Neander machine as a rudimentary architecture
based on an accumulator with 256 bytes of RAM, instructions with up to two bytes,
direct modes, and 16 instructions.

Besides the cited research, robust literature focused on specific simulators for
the teaching and learning process can be found. Some of them are quoted in the
present section.

Silva and Borges (2018) present the architecture of a didactic processor and a
simulator that interacts with sensors and actuators, with the goal of introducing
concepts of IoT (Internet of Things) in the courses of assembly language and
computer architecture. The simulator can be run on a Raspberry Pi Nano computer
in which students can read and control sensors and actuators connected to general
purpose (GPIO) pins directly from the code executed by the simulator. The
approach is to learn introductory reading and writing issues in sensors and
actuators without the complexities of real systems.

Research by Sartor et al. (2020) is focused on a tool for the study of computer
architecture in a simplified microprocessor called uPD, based on VHDL and with a
small instruction set. Questionnaires were administered to students who provided
useful feedback for improving the tool. It is used in several courses of the
computer engineering program.

A low complexity processor (LCP) was created to be simple enough to be
designed and implemented in the time allocated to laboratory classes
(KOSTADINOV; BENCHEVA, 2019). The LCP processor is a Harvard architecture
machine, with 8-bit accumulator, 256x12-bit program memory and 256-byte data
memory. Two 8-bit ports provide communication with the outside world and a
minimal instruction set with only two addressing modes (absolute and immediate)

Brazilian journal of Science teaching and Technology, Ponta Grossa, v. 15, p. 1-19, 2022.

Page | 5

exist. The assembler was also created to run the assembly language programs.
Results indicate that students were extra motivated as a consequence of their
successfully designed processor, which could run programs quickly. A few students
stated that they presented relative difficulty and needed help.

Research by Santa et al. (2017) indicates that the concepts students need to
learn about processor theory are obtained from, at least, a medium complexity
processor, which is always quite complex for beginner students. To make it easier
to get started in the world of processors, we propose a project with a great
reduction of components from an already small real processor. The minimalist
approach makes understanding hardware and assembly language easier,
improving the learning process and encouraging students to study processors.

In their work with the CompSim simulator, Esmeraldo et al. (2020) reiterate
that the use of simulators and virtual environments are complementary
pedagogical practices. Simulators are important tools to the knowledge
appropriation process because they foster the development of skills and practical
experiences, asynchronously, in virtual scenarios that resemble reality. Simulators
are also critical in laboratories that lack infrastructure or when there is a need to
reduce costs, perform quick setups, and get instant results. CompSim's hardware
platform is Mandacaru. It has a 16-bit processor model with cache and RAM
memories, system and peripheral buses.

WebRISC-V is a didactic simulator recently developed by Mariotti and Giorgi
(2020) that supports 64-bit RISC-V instruction set and processors. The simulator
supports students in studying and investigating the reasons for the good
performance of pipeline processors and allows them to easily examine the
processors' basic architectural elements as well as their internal states. The tool is
highly complex and is not intended to be used with beginner students.

The LC-3 simulator, Little Computer 3, mimics the LC-3 hypothetical
architecture as defined by Patt and Patel (2004). It defines a bank constituted by
eight general purpose registers, 16 instructions with various address modes, three
Z, N and P flags. The call to subroutines is not conventional and does not explicitly
use stack. If necessary, it should be implemented by the programmer.

The J1 simulator is based on SAP-1, Simple As Possible (MALVINO, 1985).
Simple as it is, the simulator has 16 memory positions and 16 instructions,
including a conditional jump statement. It has no stack, subroutine call instructions
or indirect addressing (MANSOUR; NAVIN; RAHMANI, 2013).

GNUSim80851 is a graphic simulator, assembler and debugger for the Intel
8085 microprocessor capable of operating on Linux and Windows. This simulator
supports all of 8085's instructions. A code written in assembly language can be
assembled and directly charged to the simulator, in a clear way to users, allowing
debugging directly from the code typed in assembly language.

AS.SIM presents ideas that are similar to the analyzed simulators. SIMAEAC
(VERONA; MARTINI; GONÇALVES, 2009) has all 144 processor memory positions
visible at the same time. MarieSim (NULL; LOBUR, 2003) offers the advantages of
using an accumulating architecture so as to contribute to beginner students’
learning. Many of the original simulators or simulator evolutions are known to
share common features such as indirect addressing, stack, specific instructions for
subroutines and number representation in hexadecimal, decimal and binary

Brazilian journal of Science teaching and Technology, Ponta Grossa, v. 15, p. 1-19, 2022.

Page | 6

systems. In addition to the characteristics cited above, students' comprehension
of the mechanics of the manual assembly of a program and the possibility of
automatic assembly by an assembler program, which is offered separately by
AS.SIM, are taken into consideration.

The diverse contributions by different researchers presented in this article are
deemed important to the development of microprocessor teaching, both in
hardware and software. However, the design requirements for each of them are
different, and only a few are aimed at beginner students learning assembly
language. Using 32-bit or 64-bit RISC processor simulators makes the learning
process more challenging and time-consuming. At the same time, the tools are
aimed at detailed architectures with many elements, which can make the learning
process even harder. The approach used in this research tries to speed up the
learning process by working with a simple architecture, but at the same time with
essential elements found in most existing architectures.

THE SIMULATOR

AS.SIM was specifically designed for the Assembly Language course offered by
the Computer Sciences program at the Sao Paulo State University, located in
Bauru, Brazil. The goals include simplifying the understanding of programming in
assembly language and machine language. It was developed in Processing2
because it runs on Windows, Linux and Mac. When an application is exported using
Processing, the source codes accompany the application, reinforcing the free
software premise.

The development of AS.SIM was fostered by the need for a pedagogical tool
in the form of a simulator with a simplified architecture, which would allow
beginner students to create a mental model of a computer, before they could
proceed to learn more complex programming in assembly language. To answer to
this demand, AS.SIM has an interface window that contains all the minimum
elements required for learning the fundamentals of programming in assembly
language.

Despite its simplicity, this simulator operates based on the very same
fundamental concepts of current computers with von Neumann architecture. The
architecture simulated by AS.SIM represents a computer with 16 basic instructions.
The arithmetic operations can be used with immediate, direct and indirect
addressing by register. The 256 memory positions are used for code, data and
stack. The architecture operates with no signal integers, thus the C and Z indicators
are sufficient to control conditional branches. Nevertheless, arithmetic operations
with and without signal can be performed naturally if the complement of two is
considered for values greater than 127.

Its architecture is composed of four 8-bit registers. It is based on accumulator,
that is, one of the data in arithmetic operations always comes from the
accumulator, the register A, and the other data comes from one of the available
address modes. When the operation comes to an end, the result is returned to the
accumulator register. Register B is intended for indirect access operations to
memory, and the value contained in it indicates the memory location that will be
used as one of the operands. The architecture also has two control registers: the
IP register (instruction pointer), which indicates the memory location where the

Brazilian journal of Science teaching and Technology, Ponta Grossa, v. 15, p. 1-19, 2022.

Page | 7

following instruction is to be performed, and the SP register (stack pointer), which
is used to maintain the stack that is the basis for the rescue of the return address
positions of the subroutines. The two flags Carry and Zero indicate the overflow
or zero in arithmetic operations. Abstract representation of the architecture is
presented in Figure 1.

Figure 1 – AS.SIM Architecture Model

Source: Authors (2020).

Instructions can be composed of one or two bytes. The first byte always
indicates the opcode - the instruction code to be executed. In two-byte
instructions, the second byte indicates an argument of the instruction.

User Interface

With the intention of building a mental model of a computer in students'
minds, AS.SIM presents all simulated structures in a single window, without menus
or configurations. In this window all memory locations and registers are
represented. In the same window, there are five buttons for controlling the
simulation, loading and saving the values stored in memory in a file. This window
is shown in Figure 2.

Brazilian journal of Science teaching and Technology, Ponta Grossa, v. 15, p. 1-19, 2022.

Page | 8

Figure 2 – Simulator Window

Source: Authors (2020).

The registers appear at the top of the interface and have their values
presented in decimal, hexadecimal and binary representation (Figure 3). As in a
real computer, the registers cannot be edited directly by the users, but they are
guaranteed to have the IP register and the SP set to zero by pressing the Reset
button.

Figure 3 – CPU’s Registers and Flags

Source: Authors (2020).

The memory cells have 8 bits and their presentations are as shown in Figure
4. In each cell the stored value is presented and, if there is an instruction with the
corresponding opcode, the mnemonic instruction is indicated. In the lower right
corner, there is a fixed cell position number in square brackets, which helps
students find the desired cell and get the notation used in Intel's IA-32 syntax to
indicate a memory location. All 256 memory locations are presented at the same
time, providing a general view to users.

Figure 4a shows memory cell 4, which stores the 88h value. It is possible to
note that the 88h opcode in this cell corresponds to the instruction “MOV A,B”, an
instruction of one byte only. Figure 4b shows memory cells 9 and 10, with opcode
A0h and data 123. As it is a two-byte instruction, in position 9, the instruction
shown is “MOV A,[123]”, where address 123 comes from the argument value given
in the following memory cell, cell 10.

Brazilian journal of Science teaching and Technology, Ponta Grossa, v. 15, p. 1-19, 2022.

Page | 9

Figure 4 – Memory cells
(a) (b)

Source: Authors (2020).

The user interface also features five buttons, two for loading and saving files
in machine language and three for controlling the simulator's execution. The three
control buttons are 1) the Reset button, which restarts the processor resetting the
IP registers – program counter – and the SP – stack pointer – ; 2) the Passo button,
which only runs the instruction indicated by the IP, repositioning it and allowing
the users to run the program instruction by instruction; and 3) the Executa button,
which sequentially runs the program's instructions, advancing the IP and showing
changes in memory and registers at a rate of two instructions per second. During
the execution of the program, started by pressing the Executa button, the label of
this button changes to Para, suggesting the possibility of stopping the program at
the current execution position.

Trying to keep the user interface as simple as possible, AS.SIM has the main
window and just another help window indicating useful information about the
instructions available in the simulator (see Figure 5). AS.SIM's help window
encourages the use of the syntax of Intel instructions used by assemblers for the
IA-32, which helps students, in a second moment in the course, program a real
computer without the impact of learning new mnemonics for the new
architecture.

The help window presents a table where each line corresponds to an
instruction and the columns contain the following information: i) instruction
opcode; ii) mnemonic; iii) a brief description of the operation in a similar format to
that used in high-level languages; iv) the flags indicators affected by the
instruction; and v) a note on the number of bytes of the instruction. The symbol
“□” represents where the value of the second byte that constitutes the instruction
will be inserted. The square brackets “[“ and “]” represent direct or indirect
addressing with registers, so that the memory cell in the indicated position
between them will be used by the instruction.

Brazilian journal of Science teaching and Technology, Ponta Grossa, v. 15, p. 1-19, 2022.

Page | 10

Figure 5 – AS.SIM help window

Source: Authors (2020).

AS.SIM operation

Simulations in AS.SIM are executed from instructions loaded in memory, and
this can be done directly by the users, either by typing the opcodes of the
instructions and their data in the memory cells or by loading an object file with the
data to be assigned to the memory.

For users to insert a program into the memory cells, they need to understand
the principles of assembly, that is, the transformation from assembly language to
machine language. Thus, they write their program in assembly language using the
mnemonics and data of each instruction. Then, they do the assembly manually,
which consists of transforming the mnemonics to the corresponding opcode bytes,
generating a sequence of opcodes and data. Finally, they insert this sequence, byte
and byte, into the simulator's memory cells. The assembly must comply with the
available instructions, presented in the help window, as shown in Figure 5.

The object file used by AS.SIM is a text file containing up to 256 lines, each line
refering to the corresponding memory cell. This file can be either edited by the
users in a text editor or generated by an assembler program from an assembly
language source file. An assembler program automates the transformation of an
assembly language file to a machine language file, the latter being called an object

Brazilian journal of Science teaching and Technology, Ponta Grossa, v. 15, p. 1-19, 2022.

Page | 11

file. Both in the object file and in the opcodes and typed data, each value can be
represented in decimal or hexadecimal when followed by an “h”.

AS.SIM operates with jumps and calls to subroutines with absolute
destinations, as they are more intuitive and facilitate the calculation of
destinations in the assembly. Conditional or fixed jump instructions, when at the
time of their branches, cause the second byte of the instruction - the destination
address - to be loaded into IP. Similarly, when a CALL instruction is used, IP+2 is
saved in the stack and IP is loaded with the address of the subroutine. When
executing the RET instruction, the value taken from the stack is assigned to the IP
register, returning from the subroutine.

In IA-32, the conditional jump instructions are divided into two groups: signed
and unsigned conditional jumps, with signed operations using signal and overflow
indicators in addition to the C and Z indicators (INTEL, 2016). Since AS.SIM is
composed of only the C and Z indicators, the conditional jump instructions always
operate from the affected indicators in the arithmetic instructions on unsigned
integers, and follow the IA-32 mnemonics nomenclature for the applied
conditional branches to unsigned integers. The six conditional jump instructions,
when used with the SUB or CMP instruction, cover the conditions of lesser (JC),
greater (JA), equal (JZ), different (JNZ), less than or equal (JBE) and greater than or
equal (JNC). Instructions JC, JNC, JZ, JNZ check one indicator only to decide on the
branch; instructions JA and JBE depend on both indicators, where JA checks that C
and Z are off and JBE checks that C or Z are on.

USE OF AS.SIM IN THE ASSEMBLY LANGUAGE COURSE

AS.SIM has been used in the Assembly Language course since 2014. This
course is offered once a year, consists of a 2-hour class a week, and takes place
during the second term of the Computer Sciences Program. AS.SIM is an
introductory tool employed in the first 12 hours of this course.

An integrated environment for the development of professional programs
may hide steps or generate misunderstandings on how a program is assembled
and loaded in memory. With AS.SIM, students are encouraged to firstly write their
program in assembly language without any directive, and then perform the
assembly manually and test their programs. As beginner students initially need to
write the program directly into assembly language, relations between machine,
assembly and high-level languages are reinforced, which deepens the concepts of
computing fundamentals.

Once students have acquired the concept of assembly, directives and labels
for constant values and memory locations are added so that they can start using
an assembler program. At the same time, students are encouraged to develop
their own assembly program under teacher guidance in relation to the assembler's
specifications, directives, instructions, addressing modes and to the syntax
normally found in commercial assemblers. The teacher also instructs that students
need to perform two steps to complete their assembly. The first step is to
determine the position of the labels used in the branch and subroutine
destinations, and the second step is to deal with the assembly of instructions and
writing the machine language in the object file. The proposed assembler, in

Brazilian journal of Science teaching and Technology, Ponta Grossa, v. 15, p. 1-19, 2022.

Page | 12

addition to the instructions available and indicated in the help window (see Figure
5), offers the ORG, EQU, DB and END directives.

Once students have understood the functioning of a CPU's architecture and its
programming in machine and assembly language, they are taught about another
tool, with a professional integrated development environment, which offers
compiling, assembling, loading, executing and debugging the code with the
visualization of registers, memory sections and flags.

RESULTS

AS.SIM has been used in the Computer Science Program at the Faculty of
Sciences at Unesp in Bauru since 2014, which allows for a quantitative analysis
based on the pass rate of the Assembly Language course.

Data were collected from students who took and passed the Assembly
Language course between 2011 and 2018. During this period, 325 students
enrolled in the course, including those who dropped out and those who failed and
had to take the course in the following year. The proportion of those who passed
are shown in Table 1. AS.SIM was used by students in 2014, 2015, 2016 and 2018.
In 2017, a substitute teacher taught the course and did not use AS.SIM.

Table 1 – Passing Students in Each Year

Year
Total number of

students
Passing students Pass rate (%)

2011 42 23 55%

2012 40 19 48%

2013 46 20 43%

2014 46 30 65%

2015 39 24 62%

2016 30 21 70%

2017 41 19 46%

2018 41 29 71%

Source: Authors (2020).

Analyzing the graph of students' pass rates, shown in Figure 6, built from the
last line of Table 1, data suggest that in the years 2014, 2015, 2016 and 2018, when
the simulator was used, the pass rate was greater than or equal to 62%, whereas
this same rate was less than 55% during the other years. Ignoring other adverse
factors that may have influenced the pass rate, the improvement shown by
students who used AS.SIM seems to be significant.

Brazilian journal of Science teaching and Technology, Ponta Grossa, v. 15, p. 1-19, 2022.

Page | 13

Figure 6 – Percentage of Passing Students per Year

Source: Authors (2020).

Table 2 shows the distribution of the number of students in the course divided
by final grade ranges, with each range having a width of 1.0 and the final grades
assigned to students ranging from 0.0 to 10.0. Students who dropped out are in
the range of [0, 1]. In this table, students are divided into classes that used the
simulator, with 156 students; and classes that did not use the simulator, with 169
students.

Table 2 – Grade Distribution by Range

Grades With simulator Without simulator

[0, 1] 2 17

]1, 2] 7 13

]2, 3] 16 14

]3, 4] 5 13

]4, 5] 13 23

]5, 6] 22 15

]6, 7] 26 16

]7, 8] 19 19

]8, 9] 20 14

]9,10] 14 8

Source: Authors (2020).

Comparing the graphical representations in Figure 7 and Figure 8 and Table 2,
one can observe that the range of students with grades [0, 1], who did not use the
simulator, in Figure 7, is preponderant. On the other hand, the highest
concentration of grades of students who used AS.SIM, Figure 8, is in the range
]6, 7]. This observation demonstrates that the use of a pedagogical tool well
adapted to the taught content can encourage students, reducing evasion and
improving their performance in the course.

Brazilian journal of Science teaching and Technology, Ponta Grossa, v. 15, p. 1-19, 2022.

Page | 14

Figure 7 – Students' Grade Distribution in Classes that did not use AS.SIM

Source: Authors (2020).

Figure 8 – Students' Grade Distribution in Classes that used AS.SIM

Source: Authors (2020).

Students report that the direct execution of the simulator without the need
for installation, its user-friendly interface and, above all, the simplicity of the
simulated CPU architecture helped them to understand the concepts of assembly
language.

CONCLUSIONS

AS.SIM is a proposal for a simple simulator based on the von Neumann model
to start teaching Assembly Language. For the teacher, it is an option of a
pedagogical tool among other simulators with similar goals. The adoption of
AS.SIM can be justified by the ease of explaining the simple features of this
simulator, as it is easy to use and install in most common operating systems used
in personal computers.

Due to the simplicity of AS.SIM, students can focus on learning the assembly
language and its conversion to machine language. The use of the simulator does
not demand extra effort from students, as it only requires them to load the
opcodes and data into memory and press the Executa button to test their program.

Brazilian journal of Science teaching and Technology, Ponta Grossa, v. 15, p. 1-19, 2022.

Page | 15

Data obtained from 2011 to 2018 in teaching the course Assembly Language
at Unesp, Bauru, indicate some advantages in using this simulator. These data
show that the use of a pedagogical tool, well adapted to the teaching domain, can
improve students' achievement.

Brazilian journal of Science teaching and Technology, Ponta Grossa, v. 15, p. 1-19, 2022.

Page | 16

UM SIMULADOR DE APOIO AO ENSINO DE
LINGUAGEM DE MONTAGEM

RESUMO

 Este artigo descreve um simulador de um processador hipotético simples para a introdução
de conceitos de linguagem de montagem em alunos do segundo grau e nível superior. O
simulador, desenvolvido para ser utilizado como uma ferramenta didática, oferece ao
aluno, em uma interface gráfica, um modelo do funcionamento de um computador do
ponto de vista da programação de baixo nível. Nesta ferramenta, o usuário carrega o seu
programa em linguagem de máquina e visualiza as mudanças decorrentes da sua execução
na memória e nos registradores. Considerando a importância do entendimento da
diferença entre linguagem de montagem e linguagem de máquina, o aluno é orientado a
escrever seu código em linguagem de montagem e em seguida, fazer a montagem para
obter a linguagem de máquina. No início, este procedimento é de forma manual e
posteriormente através de um programa montador. A montagem manual esclarece alguns
conceitos, relacionados à geração de código executável, escondidos nos ambientes de
desenvolvimento integrados. Apesar da ferramenta simular um processador hipotético
simplificado, ela foi construída seguindo a sintaxe de instruções usada na arquitetura Intel
de 32 bits (IA-32), permitindo que o aluno utilize os conceitos absorvidos quase diretamente
no entendimento de outras linguagens de montagem em computadores reais. Esta
ferramenta é utilizada introdutoriamente na disciplina Linguagem de Montagem do Curso
de Ciência da Computação na Universidade Estadual Paulista em Bauru com significativo
aumento da taxa de aprovação dos alunos, a qual pode ser confirmada a partir dos dados
apresentados sobre oito anos lecionados, sendo quatro deles com o uso do simulador.

PALAVRAS-CHAVE: Linguagem de Montagem. Simulador. Ensino de Computação.

Brazilian journal of Science teaching and Technology, Ponta Grossa, v. 15, p. 1-19, 2022.

Page | 17

NOTES

1 GNUSIM8085 was written by Sridhar Ratnakumar in 2003. Available at:
http://gnusim8085.srid.ca/. Access on: Dec. 10th, 2019.

2 Processing. Available at: https://processing.org/. Access on: May. 15th, 2019.

REFERENCES

ACM/IEEE. Joint Task Force on Computing Curricula. Association for Computing
Machinery (ACM) and IEEE Computer Society: Computer Science Curricula 2013:
Curriculum Guidelines for Undergraduate Degree Programs in Computer Science.
ACM and IEEE Computer Society, 20 de dez. de 2013. Available at:
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf.
Access on: Apr. 21st, 2020.

ACM/IEEE. Joint Task Force on Computing Curricula. Association for Computing
Machinery (ACM) and IEEE Computer Society: Computer Engineering Curricula
2016: Curriculum Guidelines for Undergraduate Degree Programs in Computer
Engineering. ACM and IEEE Computer Society, 15 de dez. de 2016. Available at:
https://www.acm.org/binaries/content/assets/education/ce2016-final-
report.pdf. Access on: Apr. 21st, 2020.

ESMERALDO, G.; LISBOA, E. B. Uma Ferramenta para Exploração do Ensino de
Organização e Arquitetura de Computadores. International Journal of Computer
Architecture Education, v. 6. p. 68-75, 2017.

ESMERALDO, G. et al. Um Estudo Comparativo entre Simuladores
Computacionais para Apoio à Disciplina de Arquitetura e Organização de
Computadores. In: CONGRESSO SOBRE TECNOLOGIAS NA EDUCAÇÃO (CTRL+E),
4., 2019, Recife. Anais do IV Congresso sobre Tecnologias na Educação. Porto
Alegre: Sociedade Brasileira de Computação, p. 434-443, 2019.

ESMERALDO, G. Á. et al. CompSim: An Integrated Environment for Learning and
Designing of Embedded Computational Systems. In: 2020 XIV Technologies
Applied to Electronics Teaching Conference (TAEE). IEEE. p. 1-4, 2020.

INTEL. Intel® 64 and IA-32 Architectures Software Developer’s Manual. Volume
1: Basic Architecture. p. 482, 2016. Available at:
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-
32-architectures-software-developer-vol-1-manual.html. Access on: Aug. 21st,
2018.

KOSTADINOV, N.; BENCHEVA, N. An Approach for Teaching Processor Design and
How to Extend its Features. In: 2019. 29th Annual Conference of the European

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

Brazilian journal of Science teaching and Technology, Ponta Grossa, v. 15, p. 1-19, 2022.

Page | 18

Association for Education in Electrical and Information Engineering (EAEEIE).
IEEE, p. 1-4, 2019.

MALVINO, A.P. Microcomputadores e Microprocessadores. McGRAW-HILL do
Brasil, 578 p., 1985.

MANSOUR, A. Y.; NAVIN, A. H.; RAHMANI, A. M. J1 Accumulator-Based Processor
for Educational Purposes. International Journal of Advanced Research in
Computer Science, v. 4 n. 4, p. 191-194, mar.-abr. 2013

MARIOTTI, G.; GIORGI, R. WebRISC-V: A RISC-V Educational Simulator featuring
RV64IM, Pipeline and Web-Based UI. Department of Information Engineering and
Mathematics, University of Siena, July 2020.

NIKOLIC, B. et al. A Survey and Evaluation of Simulators Suitable for Teaching
Courses in Computer Architecture and Organization, IEEE Transactions on
Education, v. 52, n. 4, p. 449-458, nov. 2009.

NULL, L.; LOBUR, J. MarieSim: The MARIE Computer Simulator. ACM Journal on
Educational Resources in Computing (JERIC), v. 3, n. 2, p. 1-29, 2003.

PATT, Y. N.; PATEL, S. Introduction to Computing Systems: From Bits and Gates
to C and Beyond. 2. ed. New York, NY: McGraw-Hill Higher Education. 632 p.,
2004.

SANTA, F. M.; SARMIENTO, F. H. M.; ARIZA, H. M. Minimalist 4-bit Processor
Focused on Processors Theory Teaching. Indian Journal of Science and
Technology, v. 10, n. 14, p. 1-6, 2017.

SARTOR, M.; SOARES, T. T. M. S.; BEREJUCK, M. D. Building a microprocessor
architecture at Computer Engineering undergraduate courses. Building a
microprocessor architecture at Computer Engineering undergraduate courses.
International Journal of Advanced Engineering Research and Science, v. 7, n. 7.
Jul. 2020.

SILVA, G. P.; BORGES, J. A. S. SimuS - Um Simulador Para o Ensino de Arquitetura
de Computadores. International Journal of Computer Architecture Education
(IJCAE) v. 5, n. 1, p. 7-12, 2016.

SILVA, G. P.; BORGES, J. A. S. A Didactic Processor and Simulator for IoT. In: 2018
3rd International Conference of the Portuguese Society for Engineering Education
(CISPEE), Aveiro. 2018 3rd International Conference of the Portuguese Society
for Engineering Education (CISPEE), 2018. v. 1, p. 1-7, 2018.

Brazilian journal of Science teaching and Technology, Ponta Grossa, v. 15, p. 1-19, 2022.

Page | 19

VERONA, A. B.; MARTINI, J. A.; GONÇALVES, T. L. SIMAEAC: Um Simulador
Acadêmico para Ensino de Arquitetura de Computadores. Varia Scientia, v. 9, n.
16, p. 139-148, 2009.

Received: Aug. 15th, 2020.

Approved: Nov. 23rd, 2021.

DOI: 10.3895/rbect.v15n2.13014

How to cite: PEGORARO, R.; FRANCHIN, M. N. A simulator to support assembly language teaching.
Brazilian journal of Science teaching and Technology, Ponta Grossa, v.15, p. 1-19, 2022. Available at:
<https://periodicos.utfpr.edu.br/rbect/article/view/13014>. Access on: XXX.
Mailing address: Rene Pegoraro - rene.pegoraro@unesp.br
Copyright: This article is licensed under the terms of the Creative Commons-Atribuição 4.0 Internacional

License.

