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Abstract — This article was motivated from a practical work 

on modeling and control of a time-delayed thermal airflow 

process using adaptive techniques. The work was divided into 

two parts: (I) the modeling of the process using system 

identification methods, with main concerns to the numerical 

robustness of the identification, and (II) the digital control of 

the process using adaptive self-tuning control, with main 

concerns to the adaptation of the controller to changes in the 

process dynamics. This article presents the first part of the 

work. The thermal airflow system was represented by an 

ARMAX model, whose parameters were identified using the 

Recursive Least Squares method, based on two approaches: the 

Matrix Inversion Lemma, and the Bierman’s UD Factorization. 

The results obtained show that the last approach has greater 

numerical robustness and is more suitable for applications of 

adaptive control – the second part of the work, described in a 

separate article. 

 

Index Terms — least squares, parameter estimation, 

recursive identification, system identification. 

 

I. INTRODUCTION 

Many problems on the design of automatic controllers for 

dynamic systems involve the determination of a suitable 

mathematical model for the system to be controlled. For 

digital control applications, a discrete-time model can be 

obtained either from the discretization of an available 

continuous-time model or from the direct determination of a 

discrete model by means of system identification or 

parameter estimation methods. Identification means the 

estimation of the parameters of a given discrete-time model, 

and can be implemented by either off-line (batch) or on-line 

(recursive) calculations. In the off-line identification, a set 

of input-output values (observations) from the system is 

measured along a suitable period of time, and then used as a 

whole data set in a batch calculation to estimate the 

parameters of a given model structure. In the on-line 

identification, also known as real-time identification, the 
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model parameters are continuously estimated in a recursive 

fashion, by which the results computed at the previous 

sample time are used to compute the results for the current 

sample time. Recursive identification is particularly 

advantageous to track eventual changes on the system 

parameters, allowing an adaptive tuning of digital controllers. 

Mathematically, parameter identification is set of 

mathematical computations that intends to determine, under a 

certain optimality criterion, the values of model parameters 

that better match the input-output observations from the 

system. Recursive identification has fundamental importance 

in adaptive control, by which the controller parameters are 

automatically adjusted due to changes in the process 

parameters, provided that these changes are tracked by 

on-line identification. An interesting review of system 

identification methods can be found in [3]. 

This article describes the identification of an ARMAX 

(Auto-Regressive Moving Average with Exogenous Input) 

model for a thermal airflow system with time-delay. The 

identification was performed with the Least Squares method, 

based on two approaches: the Matrix Inversion Lemma 

[4][6][12], and the Bierman’s UD Factorization [4], with a 

comparison of the effectiveness of the two implementations. 

The article is organized as follows: Section II describes the 

mathematical formulation of the Least Squares method in its 

non-recursive (off-line) and recursive (on-line) forms; 

Section III cares about the generation of suitable input signals 

for the system to be identified, in order to meet the 

requirement of persistent excitation. Section IV presents the 

model structure chosen for the process, and the results of the 

model identification using the Least Squares method. Finally, 

Section V summarizes the conclusions about this first part of 

the work, and its relationship with the second part. 

II. THE LEAST SQUARES METHOD FOR SYSTEM 

IDENTIFICATION 

A. Non-Recursive Form 

The mathematical formulation of the Least Squares 

method was originally developed by Karl Friedrich Gauss for 

a problem of estimating the orbit of the Ceres asteroid [7]. 

Later, the method was extended to other kinds of estimation 
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problems. 

For purposes of system identification, let us consider a 

simple ARX (Auto-Regressive with Exogenous Input) 

model: 
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Fig. 1. Block diagram of an ARX model. 

 

The discrete-time delay exponent k is a positive integer (k 

= 1, 2, 3, …), and its value depends on the sampling period T 

of the model. Without lack of generality, we can set k = 1. 

Cases in which k >1 can be considered similarly, increasing 

the order of the polynomial B(z–1) by k –1 and assuming the 

first k–1 coefficients bj are identically null. From the inverse 

Z transform of Y(z) in (1), with k =1, the system output  y(k)  

at the discrete time  t = kT  is: 
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Similarly, the system output for past discrete times 
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The number of observations N must provide a sufficient 

number of equations to determine all the na+nb+1 unknown 

parameters aj and bj, that is: 

 

baba nnNnnN            11  (3) 

 

Equations (2a) to (2c) can be written in matrix form as: 

 

ΦΘY   (4) 

 

where Y is the (N+1)1 vector of outputs: 
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Φ  is the (N+1)(na+nb+1) matrix of observations: 
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and Θ  is the (na+nb+1)1 vector of parameters: 
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The main goal of system identification is to obtain an 

estimate of the “true” vector Θ . Suppose that Θ̂  is an 

estimate of Θ . From (4), a prediction of Y is: 

 

ΘΦY ˆˆ   (8) 

 

A vector of prediction errors is defined as the difference 

between the actual outputs and the predicted outputs: 

 

ΘΦYYYE ˆˆ   (9) 

 

Ideally, if the estimate Θ̂  is identically equal to the actual 

parameters vector Θ , the prediction errors vector E will be 

null. Therefore, the best estimate Θ̂  is the one that minimizes 

the estimation errors E. Since the elements of E can assume 

either positive or negative values (and null value as well), we 

consider to minimize the sum of squares of the elements of E,  

leading to the following cost function: 

 

   ΘΦYΘΦYEEE ˆˆ
T

T2
J  (10) 

 

The minimization of the quadratic cost function (10) is the 

optimality criterion for the Least Squares method. The 

estimate Θ̂  that minimizes J is obtained from: 

 

0ˆ22
ˆ

TT  ΘΦΦYΦ
Θd

dJ  (11) 

 

Since ΦΦ
T  is non-negative definite, J is minimized for: 
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  YΦΦΦΘ T1Tˆ 
  (12) 

 

Equation (12) is called the Least Squares estimate of Θ . It 

only exists if ΦΦ
T  is non-singular, and then invertible. A 

necessary condition for this is that the system is persistent 

excited, so that ΦΦ
T  does not have common lines. A formal 

definition of persistent excitation is given in [11]. The matrix 

  T1T ΦΦΦ


 is called the pseudo-inverse of Φ  [4][6] 

[9][10]. 

In practical applications, physical system usually involves 

a stochastic disturbance v(k), and the more generic ARMAX 

model shown in Fig. 2 should be used instead of the ARX 

model. The ARMAX model considers that the output y(k) is a 

result from the process input u(k) and a disturbance v(k), 

leading to a more accurate model than an ARX model. By 

this way, equation (4) is modified to: 

 

VΦΘY   (13) 

 

Where V is the (N+1)1 vector of disturbances: 
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Fig. 2. Block diagram of an ARMAX model. 

 

Multiplying (13) by the pseudo-inverse   T1T ΦΦΦ


and 

using (12), we obtain: 

 

  VΦΦΦΘΘ T1Tˆ 
  (15) 

 

This means that estimate Θ̂ may be biased, with standard 

deviation given by the following expected value: 

 

  VΦΦΦ T1T 


E  (16) 

 

When the disturbance v(k) is an uncorrelated stochastic 

signal with null average, that is, a discrete white noise v(k) = 

(k), the expected value (16) will be null, and the estimate Θ̂

will be unbiased. Otherwise, when the disturbance v(k) is a 

colored noise: 
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then the estimate Θ̂  given by (12) for an ARX model will be 

biased, unless the disturbance v(k) is included in the model. 

Therefore, to account for a stochastic disturbance in the 

system being identified, the ARMAX model must be used. 

The disturbance v(k) is assumed a white noise (k) filtered by 

polynomial C(z–1), whose coefficients are included in the 

extended parameters vector: 
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and the identification is referred as Extended Least Squares 

(ELS) [3]. 

 

B. Recursive Form 

For purposes of adaptive control, the process parameters 

must be identified at each sampling interval, so that any 

change in those parameters can be tracked and used do adjust 

the controller parameters. This allows the controller to adapt 

to changes in the process dynamics. In this sense, the batch 

solution given by equation (12) is completely unpractical, 

since as the number of equations N increases, the dimensions 

of Y and Φ  will also increase, causing computing overload 

in the digital computer that implements the identification and 

the control. It’s necessary that the previous parameters 

estimate 
1

ˆ)1(ˆ
 NN ΘΘ  can be used to compute the 

estimate 
NN ΘΘ ˆ)(ˆ   for the current time k = N. This is the 

key idea behind the recursive form of the Least Squares 

method. 

 

C. Recursive Least Squares with the Matrix Inversion 

Lemma 

Recall the non-recursive formulation of the Least Squares 

given by equations (4) to (6). At the current time k = N, a new 

observation N is added to the observations matrix Φ , and a 

new element yN is added to the vector of outputs Y, that is: 
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where: 
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Defining the covariance matrix P as: 

 

  1T 
 ΦΦP  (21) 

 

from (12), the parameters estimate 
NΘ̂ for all N observations 

at the sample time k = N is given by: 

 

NNNN YΦPΘ
Tˆ   (22) 

v(k) (k) 

u(k) + 
+ 

C(z–1) 

y(k)  
z–kB(z–1) 
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Using the Matrix Inversion Lemma [4][6][12], equation 

(22) can be modified to the following recursive form (see 

Section V): 

 

NNNN KΘΘ  1
ˆˆ  (23) 

 

where  is the output prediction error: 

 

1
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 NNNNNN yyy Θ  (24) 

 

K is the vector of estimation gains: 
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P is the covariance matrix: 
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and 

 
T

11 NNNNh   P  (27) 

 

Equation (23) means that the parameters estimate is 

updated at each sampling time as: 

 




























Error

Prediction
Gain

Estimate

Previous

Estimate

Current
 (28) 

 

Therefore, as the estimation proceeds and converges to the 

“true” parameters in Θ , the prediction error tends to zero, 

being an indicator of the convergence of the identification. 

The covariance matrix P is also indicative of the 

convergence. Since the magnitude of the elements in the 

main diagonal of P are related to the variances of the 

corresponding elements in the parameters estimate Θ̂ , a 

small element pjj (low variance) in P means that the 

corresponding parameter j is a good estimate. For practical 

implementation, when there is no good guess about the actual 

values of the parameters in Θ , the diagonal elements in P 

can be set to high values (high initial variances). As the 

estimation proceeds, the updates in P by equation (24) will 

reduce the magnitudes of its diagonal elements, and the 

elements of the gain vector K tend to zero as the number of 

observations increases and the estimates converge. Therefore, 

by avoiding the diagonal elements in P to become overmuch 

low, the prediction error will provide a continuous correction 

of the parameters estimate Θ̂  to its “true” value Θ , 

allowing to track eventual changes in Θ . This can be done 

by periodically resetting the covariance matrix P with high 

diagonal values. 

A more efficient way to avoid the diagonal elements in P 

to decrease to zero is the use of a forgetting factor . It’s a 

factor between 0 and 1, set lightly small to 1, with the aim to 

progressively eliminate the influence of past observations on 

the updates of P, which is modified to: 
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The factor hN in (27) and the covariance matrix P in (26) 

are now updated as: 

 
T

1 NNNNh   P  (30) 
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
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The forgetting factor is usually set as 0.97    1. By 

using a forgetting factor, the elements of P should not 

decrease to zero, due to the repetitive division of P by . 

However, if no new information enters the observations 

matrix Φ  for a long period of time, that is, if the system is 

not persistently excited, the repetitive divisions by  may 

increase overmuch the values of P and cause computing 

overflow. Therefore,  should be set close to 1. Fig. 3 shows 

the cumulative effect of the forgetting factor on the 

computations done at past sample times. 

 

 
Fig. 3. Effect of the forgetting factor on past estimations. 

 

D. Recursive Least Squares with UD Factorization 

The Least Squares method based on the Matrix Inversion 

Lemma is a powerful parameter estimator. However, it is 

sensitive to the propagation of numerical errors, which may 

turn the covariance matrix P negative semidefinite, causing 

divergence of the parameters estimate Θ̂ . A solution for this 

problem is the factorization of P as a product of matrices. 

Factorization methods were developed in past decades to 

improve the robustness of computations performed with early 

computers with low arithmetic precision. However, those 

methods remain useful for use in today’s modern computers. 

Several methods for matrix factorization are available for 

computing the RLS recursions. The most widely used is the is 

the UD Factorization due to Bierman [4]. In this method, the 

covariance matrix P is factorized as a product of two 

matrices, U and D, in the following form: 

 
T

UDUP   (32) 

 

where U is an upper triangular matrix with unity diagonal 

elements, and D is a diagonal matrix. The Least Squares 
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recursions based on UD Factorization are summarized in 

Section VI. 

The algorithm for parameter estimation using the 

Recursive Least Squares method is summarized below: 

 

1. At the current time k = N, acquire the process input u(k) 

and output y(k). 

2. Compute the vector of observations k  (equation (19)). 

3. Compute the prediction error k  (equation (24)). 

4. Compute the gain vector K  (equation (25), or (48) if 

using UD Factorization). 

5. Update the vector of parameter estimates Θ̂   (equation 

(23)). 

6. Update the covariance matrix P  (equations (26) or (31) 

if using the Matrix Inversion Lemma; or (45) to (47) if 

using UD Factorization). 

7. Wait for the next sampling time and return to step 1. 

 

Fig. 4 illustrates the idea of the Recursive Least Squares 

method for system identification. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4. Illustration of the recursive estimation procedure. 

 

III. PERSISTENT EXCITATION 

For reliable parameter estimation, the output signal of the 

system under identification must carry representative 

information about the system dynamics. In other words, the 

input signal must excite properly the system so that its output 

carries rich information about the system dynamics. The ideal 

signal for this purpose must have an uniform power 

spectrum. A discrete white noise meets this requirement, 

however, it is an ideal model of signal. Nevertheless, it’s 

possible to synthetize physical signals with approximate 

uniform spectrum on a suitable frequency range. One of such 

signals is the PRBS. 

A Pseudo-Random Binary Signal (PRBS) [13], is an 

uncorrelated binary sequence. It can be generated by a 

shift-register, which is binary register whose bits are moved 

in a FIFO (first-in first-out) manner, with a trigger frequency 

f0. Since a shift-register is a deterministic device, its PRBS 

signal is actually predictable and cyclic (periodic). However, 

by choosing a suitable length (number of bits) for the 

shift-register, it’s possible to generate PRBS signals that 

persist without repetition for an arbitrary long time, even by 

thousands of years. 

For analog applications, including a low-pass filter at the 

output of a PRBS generator will produce a band-limited 

gaussian white noise, that is, a noise with flat (uniform) 

power spectrum up to the cut-off frequency of the filter. 

Alternatively, one may compute a weighted sum of the bits of 

the shift-register, using a set of resistors, with similar result. 

Those are some ways to generate analog signals with uniform 

spectrum up to several MHz. Such digitally synthetized 

analog noises are easy to generate using the same computer 

that implements the digital controller. 

The simpler and more commonly used PRBS generator is 

the feedback shift-register, shown in Fig. 5. A shift-register 

with length of n bits triggered by a clock frequency f0. An 

exclusive-or gate is used to generate a serial input bit to the 

shift-register, from its latest (nth) bit and an specific 

intermediate (mth) bit. The maximum number of states for a 

shift-register of length n is 2n, but the state {01020304…0n} 

gets stuck, since the exclusive-or gate regenerates a bit 0 in 

the serial input of the shift-register. Therefore, the maximum 

number of states for this feedback shift-register is 2n–1. 

Starting from a given non-zero initial state, the 

shift-register gets several states, eventually repeating its 

states history after 2n–1 clock pulses. The PRBS signal is the 

binary sequence generated by the nth bit. It is cyclic with 

period  T0 = (2n–1)/f0. This period can be made arbitrary long 

by choosing suitable values for the trigger frequency f0, the 

length n of the shift-register, and the feedback bit m, so that 

the PSBS signal becomes an uncorrelated noise. It’s not 

necessary to build a physical circuit to generate a PRBS. It is 

easily generated by a software simulated shift-register, with 

the same language used to perform the identification, or with 

native functions of the software, like “idinput” from 

MATLAB®. In this work, the A/D conversion to acquire y(k) 

and the D/A conversion to synthetize u(k) were implemented 

with a data acquisition board based on the C++ programming 

language. Therefore, the shift-register was also implemented 

in C++, within the system identification program. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Feedback shift-register with length n and feedback bit m. 

 

For system identification purposes, the system can be 

excited by a single PRBS signal, or by a combination of an 

specific input signal (e.g.: step, square wave, etc) plus a small 

PRBS, which will act as a persistent excitation to the process, 

mainly when the process is at a steady state condition, to 

avoid the matrix ΦΦ
T  in (12) becoming non-singular. 

IV. SYSTEM IDENTIFICATION IN PRACTICE 

The system identification was applied to the thermal 

airflow system “Process Trainer PT-326” [14], by Feedback 

Instruments Limited, shown in Fig. 6. In this system, a 

rotating impeller generates an airflow through a open-end 

Θ  

)1(ˆ kΘ  

real process 
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)(ˆ ky  
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duct. The impeller rotation is manually adjusted to generate a 

fixed air flowrate. At the inlet of the duct, immediately after 

the impeller, there is a heating wire grid of Ni-Cr alloy, 

powered by a variable current source excited by the process 

input signal (or control signal), to heat the airflow generated 

by the impeller. The duct has three (left, central, and right) 

ports for insertion of a sensor (thermistor) probe into the duct, 

to measure the airflow temperature, which is the process 

variable to be controlled. A particular aspect of this thermal 

process is the existence of a small time-delay in the 

temperature response due to the displacement between the 

heating grid (actuator) at the inlet of the duct and the port 

where the thermistor probe (sensor) is inserted into the duct. 

Those time-delays were [15]: τ1 = 0.214 sec (left port, at 28 

mm), τ2 = 0.257 sec (central port, at 140 mm), and τ3 = 0.341 

sec (right port, at 274 mm). Another particular aspect is that 

the process dynamics may change with variations in the 

external ambient air impelled into the duct. Even though 

those changes are small, they do exist. 

A schematic of the thermal airflow system PT-326 is 

shown in Fig. 7. The red lines indicate the output temperature 

signal, which can be taken from socket “Y”. The blue lines 

correspond to the process input, which is delivered to the 

system through socket “A”. When socket “Y” is not 

connected to socket “X”, the system is in open loop. 

The speed of the rotating impeller can be adjusted at 

specific fixed values by the “throttle control” dial. After 

fixing the impeller speed, the time delay of the airflow 

temperature process will depend on the location of the 

temperature sensor probe within the duct. In Fig. 7, the sensor 

probe is placed at the right port of the duct, so that the time 

delay of the process will be longer. 

For open loop system identification, the output 

temperature signal is acquired by an A/D converter from 

socket “Y”, and the excitation signal for the process input is 

delivered by a D/A converter through socket “A”. Signal 

conditioning circuits are necessary to connect the A/D and 

D/A converters to the proper sockets of the system. 

The Recursive Extended Least Squares (RELS) method 

based on the Matrix Inversion Lemma and on the UD 

Factorization was used to estimate the model parameters of 

the PT-326 system. It was observed that the step response of 

this system follows approximately the response of a first 

order plus time-delay (FOPTD) model. For purposes of 

identification and control of the PT-326 system, the sampling 

time was chosen to be T = 0.2 sec. 

For the sampling time T = 0.2 sec, the discrete model of the 

system was chosen as [15]: 
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The exact value of the time-delay exponent k depends on 

the sampling period T. However, since k is at least 1 (k  1), 

the discrete transfer function (33) can be written in a more 

generic form: 
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The system identification was implemented in a PC 

computer using the C++ programming language. A data 

acquisition board [1] installed in the computer provided the 

necessary A/D and D/A interfaces with the process to acquire 

the process output signal y(k) and to produce the process 

input signal u(k). 

The identification using the RELS method was performed 

over 60 seconds, which corresponds to 300 sampling 

intervals (60/T = 60/0.2 = 300). The input signal to the system 

was a pure PRBS generated by software and synthetized by a 

D/A converter [1][2], with amplitude 0–4 volts and trigger 
 

 

Fig. 7.  Schematic of the thermal airflow system Process Trainer PT-326. 

 
Fig. 6. Front view of the thermal airflow system PT-326. 
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period equal to the sampling period T. The first 20 seconds of 

this input signal are shown in Fig. 8, and the corresponding 

process output is shown in Fig. 9. Recall that the output 

signal is the temperature of the air stream at the point where 

the temperature sensor is located. 

 

 
Fig. 8. PRBS signal used as process input. 

 

 
Fig. 9. Output temperature signal resulting from the input PRBS signal. 

 

Fig. 10 and 11 show the results of the identification for the 

RELS method with UD factorization, when the system has its 

temperature sensor located at the right port. The initial values 

of all the parameters were set to 0.1. The forgetting factor for 

the recursive identification was set as  = 0.985. The matrix 

U was initialized as an unity triangular superior matrix, and 

the matrix D was initialized as a diagonal matrix D = 5000I. 

The parameters estimate resulted as: 

 

 

 T

T

1210

871.0130.0167.0012.0    

ˆ



 abbbΘ  (35) 

 

 
Fig. 10. Estimates for parameters bj. 

 

 
Fig. 11. Estimate for parameter a1. 

 

The RELS method based on the Matrix Inversion Lemma 

was also implemented. The same initial values for the 

parameter estimates and for the forgetting factor were used. 

The covariance matrix P was initialized as P = 5000I, and the 

initial values for elements of gain vector K were set to 5000. 

The results for the identification are shown in Fig. 12 and 13. 

Notice that estimates values obtained using the Matrix 

Inversion Lemma are statistically consistent with the values 

obtained with UD factorization. Compare Fig. 12 and 13 to 

Fig. 10 and 11. Clearly, the approach based on the Matrix 

Inversion Lemma is more sensitive to numerical calculations, 

although it was not ill-conditioned. 

 

 
Fig. 12. Estimates for parameters bj (matrix inversion lemma) 

 

 
Fig. 13. Estimate for parameter a1 (matrix inversion lemma) 

 

Since the identification method based on the Matrix 

Inversion Lemma gives imprecise results, the RELS method 

based on UD Factorization, due to its greater numerical 

robustness, was used in model identification for the two 

remaining positions of the temperature sensor. For the central 

position, the parameter estimates are shown in Fig. 14 and 15, 

with the following result: 
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 

 T

T

1210

856.0068.0205.0072.0    

ˆ



 abbbΘ  (36) 

 

 
Fig. 14. Estimates for parameters bj. 

 

 
Fig. 15. Estimate for parameter a1. 

 

Finally, for the temperature sensor located at the left 

position, the parameter estimates are show in Fig. 16 and 17, 

with the following result: 

 

 

 T

T

1210

845.0020.0128.0123.0    

ˆ



 abbbΘ  (37) 

 

By comparing (35), (36), and (37), the absolute value of 

the time-constant parameter a1 decreases as the temperature 

sensor is positioned more and more to the left, that is, closer 

and closer to the heating wire grid after the air impeller. This 

is consistent with the fact that the system response must 

become faster as the sensor gets closer to the actuator. 

 

 
Fig. 16. Estimates for parameters bj. 

 

 
Fig. 17. Estimate for parameter a1. 

 

V. RECURSIVE LEAST SQUARES BASED ON THE 

MATRIX INVERSION LEMMA 

The equations for the recursive form of the Least Squares 

method based on the Matrix Inversion Lemma are derived 

here. The covariance matrix P is defined as: 

 

  1T 
 ΦΦP  (38) 

 

From (18), the covariance matrix at the discrete time k = N 

is: 
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Equation (39) can be expanded using the Matrix Inversion 

Lemma [6]: 

 

    1111111 
 DACBDABAABCDA  (40) 

 

By choosing: 1

1



 NPA , T

NB , 1C , and 
ND , 

equation (39) can be written as: 
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Defining: 

 
T

11 NNNNh   P  (42) 

 

N

NN
N

h

T

1
P

K  (43) 

 

Notice that the Matrix Inversion Lemma allows the 

calculation of the covariance matrix in (41) without the need 

to perform matrix inversions, which is often an 

ill-conditioned computation. 
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From (12), (18), (41), and (40), the parameters estimate 

NΘ̂ at the discrete time k = N is: 
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where K is the vector of estimation gains, and  is the 

prediction error. 

 

Equation (44) is the recursive form of the Least Squares 

estimation of Θ  based on the Matrix Inversion Lemma. 

VI. RECURSIVE LEAST SQUARES BASED ON 

UD FACTORIZATION 

When the Bierman’s UD Factorization method is used 

instead of the Matrix Inversion Lemma, the Least Squares 

recursions follow the steps bellow: 

 

1) Initialize matrices U and D. Let n be the number of 

parameters to estimate. 

 

2) Compute the n vectors F and G as: 
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3) Set  0
, where  is the forgetting factor. 

 

4) For j = 1 to n, repeat: 
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where djj are the diagonal elements of D. 

 

If j<1: 

   For i = 1 to j–1 compute: 
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where uij are the upper triangular elements of U. 

 

5) Compute the vector of estimation gains: 

 

 T21

1
n

n

N vvv 


K  (48) 

 

6) Update the parameters estimate: 

 

NNNN KΘΘ  1
ˆˆ  (49) 

 

7) Wait for the next sampling time and return to step 2. 

 

Notice that when using the UD Factorization method to 

implement the Least Squares recursions, the covariance 

matrix P is not explicitly calculated. Instead, matrices D and 

U are updated from their elements dj and uij in (46) and (47), 

and then the gain vector K is explicitly calculated, and used 

to update the parameters estimate Θ̂  in (49). 

VII. CONCLUSION 

This article presented how system identification can be 

used to estimate model parameters of a physical system. 

The results obtained from the identification of the thermal 

airflow process PT-326 indicate the suitability of the 

Recursive Least Squares method, which can be easily applied 

to the identification of industrial process, provided that the 

process signals required by the identification can be acquired 

from the industrial instrumentation system. By using off-line 

system identification to estimate suitable models for 

industrial processes, those models can be used in the design 

of controllers, including ordinary PID controllers, for further 

implementation in the Plant Control System (SCADA or 

DCS). 

Among the two mathematical approaches investigated in 

this work to solve the least squares identification problem, 

the approach based on UD Factorization showed greater 

numerical robustness when compared to the approach based 

on the Matrix Inversion Lemma. Therefore, UD Factorization 

should be preferable for implementing system identification 

applications. 



JOURNAL OF APPLIED INSTRUMENTATION AND CONTROL 10 

 

DOI:   ISSN:  

 

 

The software routine developed for identification was 

combined with a routine for adaptive self-tuning control of 

the system – the second part of the work, described in a 

separate article. 
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