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Abstract—Surface electromyography (sEMG) analysis is 

becoming increasingly popular in a broad variety of applications. 

Despite satisfactory classification rates are frequently obtained 

through supervised machine learning (ML) algorithms, there are 

some issues mostly related to the data acquisition which are not 

properly addressed in current studies. In this paper we present a 

method capable of mitigate the noise in the sEMG acquisition 

caused mainly by loose or misplaced non-invasive electrodes. To 

address this issue we propose a stage of pre-processing capable of 

being adapted on a variety of classifiers. The proposed method is 

capable of identify this two anomalies in the signal and provide the 

data to retrain the classifier, discarding the problematic channels. 

Once the method is retrained using only the most relevant 

channels it is possible to increase the accuracy rate of the ML 

method. The method was tested on a database containing five able-

bodied subjects and four amputee subjects of both sexes. The 

average classification accuracy for the adaptive input selection 

method was 83,96  6,5% for the able-bodied subjects and 61,15  

7,7% for the amputees subjects against 72,06  8,0% in able-

bodied subjects and 39,77  10,6% for the amputees subjects 

considering the non-adaptive approach. Both systems make use of 

the proposed method to classify 9 distinguish upper-limb 

movements with different degrees of freedom. 

 
Index Terms—electrode assortment, upper-limb signal, neural 

network, auto-adaptive methods, surface electromyography 

 
 

I. INTRODUCTION 

N recent years, there has been an increased interest in using 

Machine Learning (ML) to process biological data such as 

sEMG [1]. Typically, a sEMG signal movement classification 

consists on a pattern recognition / classification algorithm, 

which includes several popular methods such as LDA [2, 3], 

Artificial Neural Networks (ANN) [4, 5], Fuzzy Logic [6, 7],  

Neuro Fuzzy [8], Genetic Algorithms, Support Vector 

Machines [9], Bayesian Networks [10-12] and Logistic 

Regression [13]. There are also some approaches using 

Independent Component Analysis (ICA) [14] and Principal 

Component Analysis (PCA) [15, 16] focusing on 

dimensionality reduction and efficient computation, techniques 

focused on provide more efficiency to classification stage. 

 ANN is one of the most popular techniques among 

machine learning strategies and so it is on the classification of 

sEMG data. As example, Ahsan et al. [5] presented the 

detection of four hand motions using an ANN. Additionally, 

considering the advantages of Fuzzy Logic combined with the 

power of adaptation of an ANN, a Neuro-Fuzzy algorithm for 

myoelectric control has been proposed [1, 17] for the intelligent 

control of a prosthesis. Also, a hierarchical Neuro-Fuzzy [7] 

controller has been found to be adapting well on people who 

generate different muscle activity levels.  Recently, there have 

been some attempts to apply Hidden Markov Models (HMM) 

[11] and the Gaussian Mixture Model (GMM) [12] to upper-

limb movement classification using myoelectric signals. 

Moreover, Bayesian approaches have as characteristics being 

good at assimilate prior data and construct an adaptive process 

without concrete information [10]. 

 Even though a several methods have been attempted so far, 

achieving a powerful algorithm is still quite challenging 

because sEMG signals are commonly affected by the 

environmental changes, movement performed and subjects 
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[10]. Due to the sensitive nature, external noise sources and 

artifacts can influence sEMG signals, which frequently mislead 

the classification algorithm, resulting in poor classification 

accuracy. Most of the noise, artifacts and interference that may 

contaminate sEMG signals consist of electrode noise, motion 

artifacts, power line noise, ambient noise and inherent noise in 

electrical & electronic equipment [18, 19]. There are some 

works like [2, 19, 20] which respectively aim on classify and 

identify the destructive interference present in the sEMG signal. 

Indeed, the acquisition process is a critical stage that directly 

affects the posterior processing stages, undermining the 

classification process and accuracy of the system. 

Accuracy is an important factor when developing a 

multifunction prosthesis controller. This factor can be improved 

by extracting more discriminant information from muscle 

signal, and adopting a classifier that is capable of exploiting this 

information [21]. 

In this scenario, two possible solutions are interesting to raise 

the accuracy level: I) to increase the number of sEMG channels 

that are used in data collection (which could increase the delay 

in the system due the quantity of information to process); II) to 

select the sEMG channels containing more significant data in 

order to promote a high-level training of the ML method. 

Despite the use of a large number of sEMG channels presents 

itself as a possible solution to boost the accuracy, at the same 

time it represents a considerable increase of data processing, 

which in many cases may turn the embedded application of the 

system unfeasible. An attractive approach is to work with the 

most significant channels, in order to obtain a more-efficient 

classification, maintaining a continuous input selection of 

relevant data.  

This work presents a solution which is capable of adapting 

itself based on environmental changes using only relevant 

channels to perform the ML supervised training in order to 

avoid information acquired by improper electrode positioning. 

The target interferences that the system proposes to mitigate are 

disconnected and misplaced electrodes. Based on these 

interferences, the system performs a continuous selection of the 

most proper electrode arrangements considering the signals that 

best describe the upper-limb movements [22]. The selection of 

the most proper channels is based on identification of brusque 

non-idealities in the input signal. Each time the set of inputs is 

update, a new training instance discarding the channels that 

present signals with characteristics of loose or misplaced 

electrodes is performed. 

 Two different groups of subjects took part in this study. To 

evaluate the results, the developed solution is compared with a 

neural network that does not discard any channel acquired. The 

methodology is detailed in the next section.  

II. MATERIALS AND METHODS 

In this section, the methods, equipment and conditions used 

in the acquisition and processing of the electromyography 

signals are explained. The Figure 1 represents a simplified 

block diagram of the auto-adaptive input selection method. The 

upper-limb myoelectric signals are acquired using commercial 

electromyography equipment and the assays performed as 

detailed below 

 
Fig. 1.Overall block diagram of the system. 

 

A. Assays 

The sEMG signals were acquired with 1 kHz sampling 

frequency while a random sequence of movements was shown 

in a LCD display to the subjects. The subjects were required to 

reproduce 18 movements, containing two repetitions of the 9 

distinguish movements as naturally as possible, with no 

constrains in relation to time or force. The number of assays 

differs to each subject and the total of movements performed 

could be checked further on in Table 1.The movements are 

classified into two groups: simple motion (hand close, wrist 

extension, wrist flexion, forearm rotation and forearm flexion) 

and composed motion (forearm rotation/flexion, forearm 

rotation with hand closed, wrist flexion/extension, and forearm 

rotation with hand closed). All procedures performed in these 

studies involving human participants were in accordance with 

the ethical standards of the institutional research committee and 

with the 1964 Helsinki declaration and its later amendments or 

comparable ethical standards. 

 

B. Subject Description and Electrode placement 

Group 1 is composed by 5 able-bodied female and male 

subjects. The electrode positioning is muscle specific as 

illustrated on Figure 2a. The muscles used were biceps, flexor 

carpi ulnaris, flexor carpi radialis, extensor digitorum pronator 

teres, brachioradialis, palmar longus and extensor carpi ulnaris, 

respectfully acquired by sEMG channels from 1 to 8. For Group 

1, six major sequences were performed.  

Group 2 consists of 4 amputee subjects, female and male, 

with different upper-limb amputation degrees. For the data 

acquisition, 3 different major sequences of movements were 

considered. The electrodes were placed as presented in Figure 

2b, in a random order and equally spaced, according to the 

amputation level of the subject. 

 

C. Signal Segmentation and Feature Extraction 

The segmentation of the acquired signal was based on the 

timing of the videos used for stimulus on the signal acquisition. 

For this analysis, three characteristics were acquired from the 

sEMG signal: RMS, Variance and the Kurtosis. These three 

features are among the most used involving sEMG signal 
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processing. More detailing information about feature selection 

and its influence on accuracy rate could be obtained on [23] and 

[24]. 

 

 
Fig. 2.Electrode positioning of: 2a) non-amputees subjects and  

2b) amputees subjects. 

 

D. Motion Classification 

The sEMG classification was performed through ANN with 

a Multiple Layers Perceptron (MLP) topology. The MLP 

typically consists of an input layer, one or more hidden layers 

of highly interconnect computational nodes and one output 

layer. The input signal is propagated forward through all layers 

of the network. Moreover, multilayer networks can use several 

different learning techniques. For this solution, the learning 

technique selected is the back propagation algorithm. 

Therefore, was applied to the ANN an array of pre-determined 

entry and were analyzed the response of the network through 

the values of the output layer, which were compared with the 

desired response to compute the value of the error function 

(Supervised Training). In turn, the error signals were 

propagated back through layers of the network, against the 

direction of synaptic connections, adjusting the nodes weights, 

so that the actual output value of network approaches to the 

desired value in a statistical sense [8, 25]. 

 The ANN dimension was determined empirically, based on 

previous tests with the dataset. The ANN developed has two 

dimensions of hidden layers with 50 and 25 neurons 

respectively, with inputs varying from 3 to 24, depending on the 

number of channels used, and with three characteristics of each 

channel mentioned previously (RMS, Variance and Kurtosis). 

Nine outputs are generated, representing the nine selected 

movements performed by the subject to be classified. The 

function used for the hidden layers of the network was a 

sigmoid function, and generates values with a range of -1 to 1.  

 

E. Auto-adaptive Method for Channel Selection 

The detection of loose and misplaced electrodes is especially 

useful to improve the overall performance of the recognition 

method in long-duration assays, were these two scenarios 

occurs more frequently. The proposed method returns a 

Channel Status Map that indicates the activation of each 

segment of signal, based on the Signal-Noise-Ratio (SNR) 

value. To generate the status of each channel, the RMS / SNR 

ratio value of each segmented is used to select which channels 

must be used as inputs of the ANN, creating a Signal Status 

Map through time (Global Channel Status Map). The 

thresholds used for the channel status definition were 

empirically defined based on the dataset. When a channel 

becomes inactive (loose or misplaced electrode), the channel is 

discarded. The adaptive method can also re-include the channel 

once that an inactive channel becomes active again.  

Henceforth, it is possible to re-train the ANN using the 

Channel Status Map and historical data. All the re-training and 

identification is self-made, without any user interaction.  

On an electromyography scope and acceptable SNR must 

present a moderate relation between the sEMG signal and the 

baseline noise or possible artifacts captured by the electrodes. 

Since the conditioning of sEMG signal implies a high 

amplification factor (usually more than 1000 times), simple 

noise interference could contaminate the sEMG signal at the 

point of turning it useless for our application, as presented on 

Figure 3. Figure 3 presents a situation of loose electrode, were 

white environmental noise is amplified at the point of overlap 

the muscle activity contribution, which is a typical scenario of 

very low SNR. Another scenario of low SNR may happen when 

the electrodes are not positioned on an appropriate section of 

the muscle, providing very low relevant signal, which confuses 

itself with the baseline noise and does not contribute with 

relevant information for the classification algorithm. 

To test the proposed algorithm, assays with loose and 

misplaced electrodes were performed. In the assays, the 

disconnected electrodes presented a complete saturation of the 

signal, explained by the high-presence of noise captured by 

electrodes with low or null skin contact. Unlike the saturated 

output present in loose electrodes, a misplaced electrode, 

presents an insignificant signal level that reflects an 

inconvenient electrode positioning for the target movements 

since are no relevant influence of the chosen muscle. 

Besides the assays for characterization, a validation assay 

was also performed in order to validate the proposed 

methodology.  The validation assay consists of 3 sequences 

using electrode positioning presented on Figure 2b. During the 

assay, some electrodes were disconnected and then connected 

again with a pre-defined timetable. In the next sections, the 

methodology is explained based on the validation data. 

 

F. Identifying the Signal Relevance 

sEMG sensors are non-invasive, thus, a common issue when 

dealing with long-term assays is the decrease of electrode-skin 

contact over time. Therefore, it is important to consider the 

quality of the channels that are being acquired and eventually 
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discard them. To identify all the loose electrodes (LooseMap) 

the proposed method addresses the constant noise over time and 

uses it as basis for the threshold definition. Once the RMS value 

of the segmented part of the signal is 4 times higher than the 

historical calculation of the VRMS, the signal is considered 

inactive. The channel is considered inactive since it is capturing 

a large amount of noise, saturating the signal and misleading 

the correct classification of the signal.  

Misplaced electrodes are also a frequent problem in sEMG 

movement classification due to the change in electrode position 

over time, by several reasons, like sweat, excess movements 

and decrease in electrode-skin contact. In order to identify the 

misplaced channels (MisplacedMap), a method that defines a 

threshold based on the SNR is proposed.  The SNR is calculated 

based on the RMS value during a moment of muscular 

relaxation and the RMS value of the current analysis window, 

to identify if the channel is providing any valid information 

during known muscular contractions (Figure 4). The algorithm 

takes into consideration the RMS value of the last 5 known 

muscular contractions (e.g. Seg 1… Seg 5) in order to decide if 

a channel is considered misplaced or not. 

G. Global Channel Status Mapping 

Based on LooseMap(LM) and MisplacedMap(MM), a 

combined Global Channel Status Map is created to identify 

each Channel Status according Equation (1). The process 

results in a map that represents which of the channels are active 

or not, for each segmented muscular contraction (Seg); all this 

process of the Global Channel Status Map generation is 

presented on Figure 3. The map is stored along with the three 

characteristics extracted from each channel (RMS, Variance 

and Kurtosis) in the segmentation step to be used by the 

adaptive inputs selection methodology as detailed in the next 

section. 

GlobalChannelStatus (Seg) = LM(Seg) ^ MM(Seg)           (1) 

 
Fig. 3.Example of Global Status Map computed using the validation data 

(Sequence C) and corresponding sEMG data from Channel 08. 

H. Adaptive Inputs Selection Methodology 

The adaptive inputs selection consists on the constant 

checking of the channel status of last identified muscular 

contraction. Thus, is possible to confirm whether the channel 

statuses changed in anyway comparing with the channel status 

used for training the pattern recognition algorithm (Training 

Status Map). If a change is detected, the neural network is 

retrained using a different set of inputs, based on the actual 

Channel Status Map. The sets of inputs are selected considering 

the historical data (sEMG segmented signal), sorting the 

movements that have at least the same active channels, based 

on the GlobalChannelStatusMap, of the new training status 

map. This process assures that the trained ANN has only data 

containing significant information for the movement 

recognition. Figure 4 represents the flowchart of the referred 

methodology. 

 
Fig. 4: Flowchart of the adaptive inputs selection methodology. 

III. RESULTS 

In order to appraise the system, 50% of the acquired data was 

used to initially train the network (individually for each subject) 

while the remaining database was used to analyze the 

movements classification performance of the proposed method. 

The number of movement samples acquired for each subject 

differs from each other, due to the lack of time available, and is 

represented in Table I. 

TABLE I.  NUMBER OF MOVEMENT SAMPLES FOR EACH SUBJECT 

Subject

s 

AB 

1 

AB 

2 

AB 

3 

AB 

4 

AB 

5 

T

R 

1 

T

R 

2 

T

R 

3 

T

R 

4 

Sample

s 

43

2 

12

6 

10

8 

16

2 

16

2 54 54 54 54 

 

The results were computed in two different ways. First, the 

system was tested using all available data to classify the nine 

different movements for all subjects. Additionally, the network 

was trained and tested using the proposed intelligent algorithm 
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for input selection. The comparison among the two methods is 

presented in the Table II. 

The movements performed (M1 to M9) by each subject and 

its corresponding accuracy and the number of channels utilized 

are listed in the Table 2. Subjects AB 1 to AB 5 represents 

Group 1, the able-bodies subjects. Subjects TR 1 to TR 4 

represents Group 2, the trans-radial amputee subjects. 

The Table 2 presents the average accuracy for each subject. 

Analyzing the table it is possible to observe an increase in the 

average classification accuracy using the auto-adaptive method. 

It is also possible to notice a greater improvement for the 

amputee subjects in the movement classification comparing 

with the able-bodied subjects. A possible reason for this result 

is the fact that the amputee subjects trials were performed with 

random placement of electrodes. The random-placement of 

electrodes could lead to signals with low SNR providing poor-

movement classification, which is optimized by the proposed 

technique. 

 

Analyzing the results, it is possible to observe the 

improvement in the average accuracy for all subjects when 

using the adaptive input selection solution. An interesting point 

to highlight is the decrease in the amount of data (channels) 

used to classify the movements and the correlated increase in 

the overall accuracy of the method.  For instance, the minor 

improvement scenario occurred in subject AB 2, in which only 

one channel was discarded, and an improvement of accuracy of 

5% was achieved. The best case scenario occurred with the 

amputee subject TR 2, in which 5 channels were discarded and 

an overall accuracy of 63% was achieved, 37% higher 

comparing to the scenario with the use of all channels.  

Another point often overlooked, is that even if the increase 

in accuracy is just slightly better, the processing of less data 

(channels) represents a gain in the system computational 

performance. This can lead to a system with better timing 

response, which is crucial for commercial use of intelligent 

prosthesis [3]. 

IV. DISCUSSION 

The proposed adaptive method achieved the main objective 

of this paper, which was to identify non-idealities in the input 

signal and perform a retraining of the ANN, updating the list of 

sEMG channels. The channels that may mislead the ANN 

considering its low significance to the classifier training were 

discarded leaving only the channels with relevant information 

to the method. 

From the analysis of the results, it can be shown that the 

proposed algorithm is a promising auto-adaptive solution. The 

technique still need further tests and refinements in order to 

maximize its main capacity which is boost the accuracy rate by 

using less and more relevant data. This solution appears to be 

particularly efficient on amputee subjects, who frequently have 

some problems with signal integrity. By performing training 

with these channels, it is possible to create a more accurate 

training instance for the movement recognition and even, by 

using fewer channels, achieve higher accuracy levels.  

Considering the possibility of reduction the number of 

channels, the proposed method presents itself as a promising 

embedded-processing technique since it results in data 

reduction to be processed and the scenarios aimed in this paper 

are more likely to occur with prosthesis for continuous use.  

It is import to remark that the present work also comprehends 

the classification of the amputee subjects, which presents a 

more defiant classification problem considering the electrode 

positioning restriction due to the lack and atrophy of muscles.  

In addition, it is important to highlight the quantity of 

movements classified for this work. In the related studies, the 

number of movements varies from 4 to 7 simple-movements 

(except [9] which performs the classification of 12 movements). 

In this study, nine movements were classified, including 4 

composed-movements which are constituted by 2 simple-

movements that are also classified by the proposed algorithm. 

The composed-movements correlation with the simple-

movements classification increases the complexity of the 

movement discrimination of the classification method 

generated by the ANN that reflects a lower overall accuracy of 

the movement classification. Although, [14] presents a series of 

parameters, which may be observed in online classification, 

especially regarding to time metrics, this work evaluated only 

in terms of accuracy and the feasibility of implementation of the 

proposed technique with a well-established classifier. The 

future improvements will focus on effective online and 

embedded classification and the use of a more effective 

classifier (e.g. LDA) to evaluate the proposed technique in 

terms of accuracy and time. 

V. CONCLUSION 

The proposed method aims to improve the accuracy rate of 

classifiers used to identify movements based on sEMG signal 

processing. To do that, the method automatically chooses the 

most relevant inputs to train and test the classifier based on SNR 

TABLE II - CLASSIFICATION ACCURACY FOR BOTH INPUT 

SELECTION METHODS PERFORMED. 

Subject Method 
Average 

Accuracy (%) 

Channels 

Used 

AB 1 
Adaptive 92.8% 6 

Non-Adaptive 77.3% 8 

AB 2 
Adaptive 80.2% 7 

Non-Adaptive 75.3% 8 

AB 3 
Adaptive 75.8% 6 

Non-Adaptive 69.4% 8 

AB 4 
Adaptive 84% 6 

Non-Adaptive 79% 8 

AB 5 
Adaptive 87% 6 

Non-Adaptive 59.3% 8 

TR 1 
Adaptive 70.4% 4 

Non-Adaptive 48.1% 6 

TR 2 
Adaptive 63% 3 

Non-Adaptive 25.9% 8 

TR 3 
Adaptive 51.9% 6 

Non-Adaptive 37% 8 

TR 4 
Adaptive 59.3% 4 

Non-Adaptive 48.1% 8 
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of each sEMG channel, therefore, discarding channels that 

present brusque non-idealities of the signal. Once the classifier 

is trained and tested with more representative channels, the 

characterization of the movement is improved, so as the 

accuracy rate. 

Although the simple pattern recognition method (ANN) used 

on this initial study, the proposed method must be capable to be 

put together with any supervised machine learning algorithm. 

The objective was to show the possibilities that the adaptive 

method can bring to improve the overall classification of the 

movements respecting the channel choice based on the superior 

contribution of each individual channel to the classifier. That 

would be an alternative technique to feature dimensionality 

reduction, with the advantage that it could be performed on-the-

fly, soon as the data is read. The technique is especially 

interesting to use with amputee subjects, since they frequently 

present a deteriorated sEMG signal due the lack of musculature 

and proper physiotherapy. 

In order to evaluate to potentiality of the proposed method, 

further studies including classifiers as SVM and Extreme 

Learning Machines (ELM) are recommended. SVM is well-

known in this application, demonstrating good capacity of 

generalization using a reduced amount of data. An ELM 

analysis would be particularly useful given the capacity of ELM 

reach an optimal solution through the pseudo-inverse use. Thus, 

it expected that reduce the channels (model variables) makes 

easier to find an optimal value and reduce the uncertain of the 

approximation made by the Moore-Penrose pseudo-inverse 

when it is not possible to reach an exact solution. Moreover, the 

studies of ELM on sEMG signal classification are incipient, 

typically the use of ELM base technique with a well-known pre-

processing algorithm such as PCA. 

Finally, as a future work implementation, it would be 

interesting to perform long-time assays in order to evaluate the 

decrease in the accuracy through the time caused by the 

looseness and misplacement due to prolonged electrode use and 

compare the results with a proposed algorithm implementation. 

In addition, it would be of great interest to utilize other 

classification methods on an embedded system combined with 

the technique presented in this paper to evaluate with which 

technique a better improvement is likely to be obtained in terms 

of accuracy and time response. 
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