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Abstract—This work proposes a new methodology of detection 
and identification of erosive cavitation in hydro turbines, which is 
based on cyclostationary modeling of the cavitation induced 
vibrational signals. Different cavitation types cause damage to 
different turbine parts and induce different vibrational signatures, 
which can be employed to identify and locate the cavitation. 
Additionally, the cavitation aggressiveness can be estimated using 
the measured power of vibrational signal. High frequency 
accelerometers picked up the signals from two real turbines under 
normal operation. The methodology was implemented in software 
and a specific hardware was developed to run the software locally. 
Signals were synthesized in accord with the cyclostationary 
modeling and employed to validate the proposed methodology. 
Results obtained from real signals were similar to the ones 
obtained from synthetic signals, and corroborate the feasibility of 
this methodology in cavitation monitoring systems.  
 

Index Terms—Cyclostationary Modeling, Cyclic Modulation, 
Erosive Cavitation, Spectral Similarity, Vibration Analysis. 

I. INTRODUCTION 

HE erosive cavitation is one of the main problems of 
hydropower generation. Erosive cavitation happens due to 

pressure drops at key points of the flow within hydro turbines. 
These pressure drops stimulate the nuclei [1] in the water to 
grow explosively and to become unstable cavities filled with 
vapor. The cavities move toward pressure recovery regions and 
collapse. The collapses cause impacts on turbine parts, which 
in turn provoke cold working of metallic parts, cracks, and loss 
of mass.  

The impacts also induce characteristic vibration patterns [2]. 
Different types of cavitation produce erosion in different 
locations, and different vibrational patterns. The vibrational 
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analysis is non-invasive and does not disturb turbine normal 
operation. However, it focuses only on the cavitation 
aggressiveness [3] estimation. The authors left the mass loss 
estimation for future research.  

A. Methodologies developed so far 

Farhat et al. [4] employed vibrational analysis on cavitation 
signals by performing full wave rectification of band-pass 
filtered signals. The method identified modulating signals at 
key frequencies and unveiled suitable locations for sensor 
installation. No direct correlation between the power of the 
rectified signal and the cavitation aggressiveness was found due 
to non-similarities between the prototypes. 

Escaler et al. [2] employed the discrete Hilbert transform to 
extract the envelope of the previously band-pass filtered 
signals. Different frequencies detected on the envelope signals 
enabled the authors to identify various cavitation mechanisms. 
The authors used a signal processing method that is very similar 
to the Detection of Envelope Modulation On Noise (DEMON) 
analysis. 

De M. and Hammit F. [5] found a ratio of erosive cavitation 
aggressiveness to the measured vibrational signal power, which 
is called cavitation erosion efficiency. 

Bajic [6] carried out vibro-acoustic analysis of cavitation 
signals and succeeded to correlate the power of the signal of 
interest (SOI) and the intensity of cavitation for a given 
machine operating point. The vibro-acoustic signal power I(P) 
can be modeled as a sum of the powers of each cavitation 
mechanism SOI Im:  
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When the machine operating point P varies, each term Im in 
(1) varies as well, and some mechanisms of cavitation may 
appear or disappear. The methodology involves changing the 
machine operating point deliberately and disturbs the normal 
operation of the plant. 

B. The proposed methodology 

The proposed methodology consists in modeling the 
vibrational signal as a cyclostationary process with respect to 
the shaft angle.  This approach enables the authors to use 
cyclostationary tools such as the Cyclic Modulation Spectrum 
(CMS) and the Cyclic Modulation Coherence (CMC) [7].  

The authors developed an equipment of analysis, which is 
based on specific software and on dedicated hardware. The 
software implements the proposed methodology and was 
validated with synthetic signals. In addition, the software was 
tested in real signals from two turbines with very low cavitation 
levels. The feasibility of application in diagnostic systems was 
corroborated by the results. 

II. EROSIVE CAVITATION IN HYDRO TURBINES 

The turbines do not always operate at optimum conditions 
despite the fact that the manufacturers limit the operating range 
to keep the cavitation within acceptable levels. The generating 
companies are compelled to operate its units far from the design 
point or even at overload due to power generation demands. 
Reaction turbines are composed of a runner with a fixed number 
of blades and a distributor with several guide vanes. Farhat 
observed that the modulation frequencies are always the blade 
passing frequency, the vane passing frequency, and their 
harmonics.  

The characteristic cavitation signal (stationary carrier) is a 
random, impulsive, and broadband signal described by the 
Morozov model [8]. The pressure impulses represent the 
individual collapses, which induce vibrations at the resonance 
frequencies of the turbine parts. 

A. Main Cavitation Types 

Escaler et al. observed many types of cavitation [2] that 
present themselves as cavity structures with different sizes, 
shapes, and locations. Their vibrational signatures 
characterized the most erosive types, which are the matter of 
concern to the authors: 

 The traveling bubble cavitation causes loss of machine 
efficiency, loud acoustic noises, and erosion exclusively to 
the runner at the trailing edge of the blades on the suction 
side. Its characteristic modulation frequencies are the blade 
passing frequency and its harmonics. 

 The cloud cavitation can induce abnormal machine 
behavior and is very erosive. The typical damaged areas are 
near the leading edge of the runner blades or eventually the 
guide vanes. Its characteristic modulation frequencies are 
the vane passing frequency and its harmonics. 

B. Cyclostationary Modeling of the SOI 

Several random and deterministic phenomena govern the 
vibrational signal induced by erosive cavitation. The random 

micro-phenomena are the collapses and impacts. The main 
deterministic macro-phenomena are the pressure fluctuations 
due to the rotor-stator interaction (RSI) and due to standing 
waves in the spiral case. Those deterministic phenomena 
modulate the rate and the amplitude of the collapses. The 
Computational Fluid Dynamics enables the hydrodynamic 
simulation of the macro phenomena, which can be modeled as 
periodic functions of the angular position θ of the turbine shaft. 
Thus, one can model the modulating signal of the traveling 
bubble cavitation as a Fourier series: 
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where b is the number of runner blades, j is the imaginary unit, 
and Bi is the complex Fourier coefficient of the component of 
machine order (MO) ib [9]. Similarly, the modulating signal 
generated by the cloud cavitation can be expressed as: 
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where v is the number of guide vanes and Ci is the complex 
Fourier coefficient of the component of MO iv. The MOs b,v, 
and multiples compose a set of key MOs. In addition, the model 
assumes that all modulating signals are non-negative for any θ. 

The stationary vibrational signal (random carrier with 
constant variance) that is induced by the collapses can be 
modeled from the mechanical response to the impacts as: 

     , , ,*B C B C B Cc h n    (4) 

where cB(θ) is the vibrational signal due to bubble cavitation 
only, cC(θ) is the vibrational signal due to cloud cavitation only 
(already in angle domain), nB(θ) and nC(θ) are the acoustic 
pressure random signals (similar to the Morozov model), hB(θ) 
and hC(θ) are the impulse responses connecting the collapse(s) 
point(s) to the external accelerometer location, and * denotes 
convolution. Both hB(θ) and hC(θ) are dependent on factors such 
as multiple paths (including fluid and solid paths) and multiple 
resonant modes. The vibrational SOI due to each cavitation type 
is therefore a nonlinear function of the stationary carrier and of 
the modulating signal, which makes the variance a periodic 
function: 

       , , , ,,SOI B C B C B C B Cx f c m      (5) 

Since the cloud cavitation damages the leading edge and the 
bubble cavitation damages the trailing edge of the runner 
blades, they have distinct mechanical transfer functions, and 
also distinct nonlinear functions for the vibrational SOI. 
Finally, the SOI is the sum of both: 

      SOI SOI B SOI Cx x x       (6) 

Since the variance of the SOI is angle dependent, it can be 
classified as a signal that exhibits [9] second-order 
cyclostationarity with respect to the angle domain. Moreover, 
one can conclude from (2) and (3) that the set of key MOs for 
the cavitation SOI is composed of b, v, and their integer 
multiples. 
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C. The Real Signal 

Real vibrational signals are subject to contamination by 
various sources of noise, such as flow noise, electromagnetic 
interference from the generator, and friction. Another important 
source of vibrational interference is the electric generator itself 
[10].  

Any vibrational signal is a sum of a periodic (deterministic) 
component and a residual (random) component. The cavitation 
SOI is part of the residual component. The residual part is also 
composed of the flow noise, the friction noise, and other noise 
sources, which are not dependent on the shaft angle. Thus, the 
SOI is the only part that exhibits second-order angle-
cyclostationarity [9]: 
 

        1 2+CS CSx x x         (7) 

 
In (7), xCS1(θ) is the deterministic or periodic part (which is 

first-order angle-cyclostationary), xCS2+(θ) is the random angle-
cyclostationary part with orders greater than or equal to two 
(which includes the cavitation SOI and the stationary random 
noise), and η(θ) accounts for all non-cyclostationary and poly-
periodic noise sources.  

A real hydro turbine also shows some speed fluctuation 
(droop speed control). Angular re-sampling can correct this 
random speed fluctuation, although the time-domain excitation 
signals and frequency-domain transfer functions lose their 
meanings in the angle-domain. Nevertheless, the speed 
fluctuations are about 1%, which means little signal changes 
after re-sampling.  

In order to build an estimator of the cavitation 
aggressiveness, only the power and the spectral similarity 
among the MO components of the SOI will be taken into 
account. Since different cavitation mechanisms induce 
vibrations through different mechanical transfer functions, it 
should be possible to distinguish MO components induced by 
different cavitation types. In addition, the pressure excitation 
signals are different, because cloud cavitation is subject to the 
harmonic cascading phenomenon [11]. 

III. METHODOLOGY 

In order to detect erosive cavitation, the first step is to 
determine the key MOs set. In this work the authors recorded 
signals from two real turbines with b=11 rotor blades and v=24 
guide vanes. The knowledge of b and v enabled the authors to 
synthesize a signal, which mimics the cavitation SOIs from the 
turbines and was useful to validate the processing algorithm. 

A. Acquisition of Real Signals 

Signals from two identical Francis turbines, namely UG01 
and UG02, were recorded. Each turbine-generator (TG) set has 
a nominal output power of 72 MW and shaft revolution 
frequency of 163.6 rpm (2.72 Hz). The generated voltage 
frequency is 60 Hz, thus each generator has 44 magnetic poles. 
Both turbines have track records showing low levels of erosion 
and were operating over 50,000 hours without maintenance. All 
generating units suffer from erosive traveling bubble cavitation 

and cloud cavitation, as evidenced by visual inspection during 
the maintenance downtime, as shown in Fig. 1. For comparison 
purposes, UG01 was operating at 67% of its nominal capacity 
(48 MW) and UG02 was operating in the idle regime (0 MW). 
Both units were synchronized with the grid. 

Two accelerometers manufactured by Rockwell Automation 
(model 9700A) picked up the vibrational signals.  The turbine 
main bearings were inaccessible and non-invasive 
measurement was mandatory. Therefore, one sensor was 
installed on the turbine cover (immediately above the main 
turbine bearing), and the others were installed on the guide vane 
arms [2]. Due to the impossibility of screwing accelerometers 
directly at the turbine parts, steel mounting bases were carefully 
machined and fixed with cyanoacrylate glue, and the 
accelerometers were screwed into the bases. 

Signal conditioners amplified and filtered the accelerometer 
signals, and the gain factor of 27 V/V was adopted. In order to 
minimize the interference from the power grid, batteries 
powered all sensors and signal conditioners. A 16-bit DAQ 
(model Agilent Technologies U2542A) connected to a portable 
computer recorded all signals at 100 kSamples/s per channel. 
The electric grid powered the recorder and the computer. 

In order to measure the shaft angular position, an optical 
tacho signal (one pulse per shaft revolution) was recorded. 
Besides, the generator high-voltage output was reduced and 
recorded simultaneously. Since the generator is a synchronous 
machine with 44 poles, one expects 22 sinusoidal cycles per 
shaft revolution. 

The U2542A recorded the two vibrational signals, the tacho 
signal, and the 60 Hz sinusoidal signal in a single multichannel 
binary file, which composed one signal set. Two signal sets 
were recorded from UG01 and one from UG02. Table I 
summarizes the main differences among all sets. 

 
TABLE I 

SIGNAL SETS ACQUIRED 

Signal 
Set 

Generating 
Unit 

(power) 

Accelerometer 
1 installed at 

Accelerometer 
2 installed at 

Duration of 
recording 

1 
UG01 

(48 MW) 
Guide vane arm 

5 
Turbine cover 920 s 

2 
UG01 

(48 MW) 
Guide vane arm 

5 
Guide vane arm 

4 
875 s 

3 
UG02a 

(0 MW) 
Guide vane arm 

4 
Guide vane arm 

5 
973 s 

a This unit was at idle regime, but synchronous with the electric grid. 

B. Signal Synthesis by Software 

A (simplistic) synthetic signal ˆ( )x t based on (2) to (7) was 

proposed to computer simulations. The nominal turbine speed 
is 2.7272 Hz, thus the expected modulation frequencies are 
30 Hz for bubble cavitation and 65.45 Hz for cloud cavitation, 
besides their harmonics.  A set of synthetic signals simulates 
900 shaft revolutions with sampling rate at 100 kSamples/s.  

For the acoustic excitations nB(θ(t)) and nC(θ(t)), two white 
Gaussian random signals were generated [12]. Each one was 
filtered by a different band-pass IIR filter, which represents the 
impulse responses hB(θ(t)) and hC(θ(t)). The resultant signals 
were the carriers cB(θ(t)) and cC(θ(t)). 
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Two Fourier series simulated the turbine RSI, one for the 
bubble cavitation and the other for cloud cavitation, according 
to (8) and (9). 

       1 0,1 11 0,1 33 0.1 55Bm cos cos cos            (8) 

   1 0,2 24Cm cos                             (9) 

A nonlinear function simulates the modulation effect on 
bubble and cloud cavitation. The square root was introduced so 
that mB(θ) and mC(θ) modulates linearly the power (variance) of 
the random carriers as follows: 

         , , , , ,,B C B C B C B C B Cf c m c m      (10) 

The synthetic SOI for both cavitation types is: 

          ˆSOI B B C Cx c m c m        (11) 

Finally, a random process θ(t) simulated the droop speed 
control of 1%. Based on θ(t), the simulated angle-domain signal 
can be represented by a time-domain signal. A Gaussian white 
noise ηS(t) with power spectral density of 3∙10-7 V2/Hz, and a 
tonal noise ηT(t) (two sinusoidal components at 30 and 40 kHz 
and power of 7.5∙10-2 V2) were added. Therefore, the complete 
mathematical model for the synthetic SOI is: 

         ˆ ˆˆ ˆSOI T Sx t x t t t       (12) 

C. Cavitation aggressiveness estimator based on SOI power 

The processing starts with the conversion of the 
recorded signals from time-domain into angle-domain by 
angular re-sampling (order tracking). The re-sampling is 
carried out by sinc interpolation [13] and the speed fluctuation 
is less than 1% for a 15-minute interval. Signals are 
oversampled so that every shaft turn has the same number L of 
samples, which is an integer multiple of N, where N is a power 
of two. Such L feature is essential for the next step, which 
employs analysis windows of length N. This oversampling, in 
the case of UG01 and UG02, corresponds to L=45056 samples 
per turn and to the new sampling rate of 122880 samples/s. 

 
1) Removal of the First-order Cyclostationary Part 

Let x[n] be the angular domain re-sampled signal from an 
arbitrary sensor. The removal of the first-order cyclostationary 
[9] part is done by subtracting the synchronous average (SA), 
which is an estimator of the deterministic part of the signal: 
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x n x kL m
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    (13) 

where K is the number of recorded shaft turns and m is the 
remainder of the division between n and L(note that n=kL+m). 
The residual part of the signal is the difference: 

          1 CS2+r CSx n x n x n x n n      (14) 

where xCS2+[n] is the cyclostationary part (with order ≥ 2) of the 
discrete signal, and η[n] accounts for all other components with 
different characteristics. Therefore, the cavitation SOI is part of 
the residual signal. 
2) Enhancement of the Pure Second-order Cyclostationary 
Part 

In order to reduce the noise term η[n], the averaged 
instantaneous power spectrum (AIPS) of the residual signal is 

computed [14]. The angle-frequency representation is required 
for posterior MO-frequency representation. Additionally, the 
AIPS merges some advantages from the SA and from the time-
frequency (or angle-frequency) representation. 

The AIPS calculation is based on the FFT of the residual 
signal: the residual discrete signal xr[n] is divided into K 
segments of L samples, where K is the number of complete 
revolutions of the shaft during the recording interval. For each 
segment, an N-long analysis window w[n] is introduced and 
shifted along the signal by steps of R samples (R<N). The 
shifted analysis window wN[n]=w[n-iR] (which is typically a 
Hanning window) effectively selects a chunk of the K-th 
segment around time samples n=iR,...,iR+N-1, and the Fast 
Fourier Transform (FFT) of the product xr[n]wN[n] is computed. 
The resultant complex matrix is known as the discrete Short 
Time Fourier Transform (STFT) of the signal. The 
instantaneous power spectrum (IPS) of the K-th segment is: 
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    (15) 

where i is the discrete angle domain variable, and h is the 
discrete spectral frequency variable. The second-order non-
linear operation makes possible the discrimination of second-
order cyclostationary signals. N=512 was adopted for UG01 
and UG02. This criterion leads to an angular resolution that is 
high enough to discriminate events due to a single blade or 
guide vane. Finally, the AIPS considers all revolutions, and it is 
computed by taking the average of the IPSs for each revolution: 

 
Fig. 1. Typical cavitation damage patterns. (a) Damage due to traveling 

bubble cavitation. (b) Damage due to cloud cavitation. 
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3) Discrimination of Machine Order Components 

The pure second-order cyclostationary signal can be 
analyzed using suitable cyclostationary tools, namely the CMS 
and the CMC. The CMS highlights any amplitude modulation, 
and reveals the periodicities hidden in the random signals. In 
this work, the CMS is obtained by computing the FFT of the 
AIPS, which transforms angle domain into MO domain: 
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    (17) 

where a is the MO domain discrete variable and CMSx[0,f] is an 
estimator of the power spectrum (PS) of the vibrational signal, 
which shows only the stationary components. Finally, the CMC 
normalizes the average power spectrum as follows: 

  
 
 

,
,

0,

x
x

x

CMS a h
CMC a h

CMS h
   (18) 

The CMC is a complex matrix, and the meaning of the 
magnitude of each element CMCx[a,h] is the degree of 
cyclostationarity. The image formed by |CMCx[a,h]| constitutes 
a visual indicator of the presence of cyclostationarity. 
 

4) Estimator of the Cavitation Aggressiveness 
The image formed by |CMSx[a,h]| constitutes a representation 

of power distributed among spectral frequencies and MO 
components, thus the cavitation SOI should appear as vertical 
lines at the key MOs set. Moreover, these vertical lines are 
composed of random dots and dashes, and their patterns depend 
on the acoustic excitation sources and on the mechanical 
transfer functions up to the sensor. 

The estimator of bubble cavitation aggressiveness is built by 
taking the component of MO b as a reference of spectral 
distribution and computing its power. The powers of the 
components of MO mb (m is an integer>1) are also accumulated 
if there is spectral similarity with the reference component. This 
similarity is evaluated by the Pearson product-moment 
correlation coefficient (PPMCC) computed between the two 
discrete spectral power distributions: 

  ,B x

m h

P CMS a mb h    (19) 

The estimator for the cloud cavitation aggressiveness is built 
in a similar manner, but the reference is the component of MO 
v: 

  ,C x

m h

P CMS a mv h    (20) 

Finally, both PB and PC are divided by the power of the 
stationary component (a=0), which reveals the percentage of 
power that is modulated due to the cavitation mechanisms: 
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  (21) 

D. Development of a cyclostationarity-based application 
specific software 

In order to monitor the erosive cavitation in turbines, the 
authors developed a software that performs all the processing 
steps described in Section III.C. The software plots the image 
formed by |CMCx[a,h]| and makes a concise text report, which 
contains the cavitation aggressiveness estimators of traveling 
bubble and cloud cavitation.  

IV. RESULTS AND DISCUSSIONS  

The developed software processed the synthetic signal set 
along with all signal sets from the turbines, and the computed 
estimators are summarized in Table II. Regarding the PPMCC 
threshold, the value of 0.6 was chosen, which yielded the best 
discrimination among different cavitation mechanisms and 
second-order cyclostationary interfering signals. 

A. Synthetic Signal Set 

Two synthetic signals 1̂( )x t and 2ˆ ( )x t were implemented, and 

they compose the synthetic signal set. Both signals have a 
stationary additive white Gaussian noise with power equal to 

0.015 V2. Additionally, the signal 2ˆ ( )x t has two tonal noises 

with powers equal to 0.075 V2. The sum of the powers of the 
bubble and cloud cavitation SOIs is 0.070 V2. The graphics of 
CMCs magnitudes are shown in Fig. 2. There are three 
continuous vertical lines representing traveling bubble 
cavitation at MOs 11, 33, and 55. There is also one continuous 
line representing cloud cavitation at MO 24. The tonal noises at 
30 and 40 kHz have little influence on the results. 

According to (8) and (9), PB accounts for 30% of cB(θ) power, 
and PC accounts for 20% of cC(θ) power. The powers of cB(θ) 
and cC(θ) are 0.030 V2 and 0.040 V2 respectively, which means 
that conventional true values of PB and PC are respectively 
0.009 V2 and 0.008 V2. 

For signal 1̂( )x t the measured values for PB and PC show 

relative measurement errors of -2.67% and -3.75%. In addition, 
the proposed method detected the power of the SOIs separately, 

even under a significant stationary noise. For signal 2ˆ ( )x t the 

results in Table II and Fig. 2 show that the tonal noise has little 
influence on the detection and separation of the cavitation SOIs 
powers. 

B. Results on UG01 

The CMC magnitudes computed from the vibrational signal 
set 1 are shown in Fig. 3. The AIPS rows corresponding to 
spectral frequencies below 5 kHz were not processed, because 
signals below 5 kHz are too noisy due to machine noise sources. 
There are not only discontinuous lines at the key MOs set, but 
also strong interfering components at MOs 22 (60 Hz), 44 
(120 Hz), and multiples. The CMC magnitudes computed from 
the vibrational signal set 2 are shown in Fig. 4. The same 
expected MO components for the bubble and cloud cavitation 
are present. The interfering components at MOs 22, 44 and 
multiples are even stronger than in signal set 1. 
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Fig. 2.  CMC computed from synthetic signals: (a) cavitation SOIs plus white Gaussian noise. (b) cavitation SOIs plus white Gaussian noise and tonal noises. 

 

 
Fig. 3.  CMC computed from signal set 1 (UG01): (a) accelerometer installed on turbine cover; (b) accelerometer installed at guide vane arm 5 
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The results presented in Fig. 3 show the traveling bubble 
cavitation SOI at MOs 11, 33, 55 (weak), and 77 (very weak). 
There is also a component at MO 24, a signature of cloud 
cavitation. Additionally, there is a component at MO 25 Fig. 3 a 
only), which suggests the presence of a Von Kármán [15] 
vortex shedding that interferes with the cloud cavitation. Fig. 4 
shows results from signal set 2 that are consistent with the ones 
shown in Fig. 3 a. The corresponding entries in Table II 
corroborate the results for the aggressiveness of both bubble 
and cloud cavitation. The detection of bubble cavitation using a 
sensor near the shaft was more feasible, but rendered the 
detection of Von Kámán vortex cavitation impossible. 

The authors concluded that the strong noise components at 
MOs 22, 44, and multiples are from the electric generator, due 
to the fact that the magnetic materials shows Barkhausen noise 
and magnetostriction. Both effects compose a source of 
mechanical Barkhausen noise [16], which is modulated at the 
electric grid frequency and at the magnetic pole passing 
frequency. This modulated noise is not intermittent but 
characteristic cavitation signals are intermittent, unless 
cavitation is at developed stage. Unfortunately, these 
components may mask part of the traveling bubble cavitation 
SOI. Therefore, its estimator may be somehow biased. 

C. Results on UG02 

The CMC magnitudes computed from the vibrational signal 

set  3 are shown in Fig. 5. The absence of lines at the key MOs 
is noteworthy. Table II reveals that the measured PB and PC are 
one order of magnitude lower than the ones obtained from 
UG01, despite the total power remains in the same order of 
magnitude. One can conclude that both bubble and cloud 
cavitation are absent in UG02, despite the methodology 
detected the noise from the generator. 

V. CONCLUSIONS 

The proposed method is suitable to detect the cavitation and 
estimate its aggressiveness, even under strong noise. Moreover, 
different cavitation mechanisms produce not only components 
with different machine orders (modulating signal), but also with 
different spectral compositions (carrier). Each cavitation type is 
characterized by a unique combination of random carrier and 
modulating signal. 

The CMC, together with the extracted powers of the 
cavitation SOIs, enables the diagnostic and identification of 
cavitation in hydro turbines with low levels of cavitation 
aggressiveness. Although it is not exactly a real time signal 
processing such as DEMON, this methodology is not empirical 
and there is no information loss due to band pass filtering. 
Moreover, the proposed method is non-invasive and does not 
interfere with turbine operation. 

 
 
 

 
Fig. 4.  CMC computed from signal set 2 (UG01): (a) accelerometer installed at guide vane arm 5; (b) accelerometer installed at guide vane arm 4 
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TABLE II 
COMPUTED ESTIMATORS OF CAVITATION AGGRESSIVENESS 

Signal Set Accelero-
meter  

PB 

(mV2) 
PB% 

(%) 
PC 

(mV2) 
PC% 

(%) 
Total 
power  
(mV2) 

Synthetic 
signal 1̂( )x t a 8.76 10.37 7.70 9.12 84.45 

 2ˆ ( )x t a 9.11 3.88 7.69 3.28 234.6 

1 (UG01) 
1 0.113 6.38 0.046 2.61 1.786 

2 0.162 11.96 0.037 2.73 1.361 

2 (UG01) 
1 0.109 8.27 0.041 3.08 1.318 

2 0.098 1.83 0.029 0.54 5.389 

3 (UG02) 
1 0.007 0.56 0.008 0.65 1.289 

2 0.010 6.01 0.003 1.93 0.169 
a It refers to synthetic signals and not to accelerometers. 
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Fig. 5.  CMC computed from signal set 3 (UG02): (a) accelerometer installed at guide vane arm 4; (b) accelerometer installed at guide vane arm 5. 
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