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Abstract— In this work we present a generalized theory of 

galvanometers from the point of view of the dynamical equations 

of coils subjected to general (but homogeneous) time varying 

magnetic fields. We explore new inductive principles for driving 

and controlling galvanometers (whose modern versions take the 

form of scanners) and envisage a special frequency shift due to 

electromechanical coupling terms under the presence of a 

transversal magnetic field. Such frequency shift can be used to 

electronically control the resonance frequency of scanners. 

Numerical simulations are presented for a silicon microscanner.  

 
Index Terms—sensor systems, electromagnetic induction, 

induction motors, micromotors, scanners, galvanometric 

scanners, inductance, voltage controlled oscillators.  

 

I. INTRODUCTION 

ecently there has been much interest in the 

microfabrication of light beam deflectors serving a 

variety of practical applications (laser printing, photo 

composition and laser projection) [1-5]. In other devices, such 

as Retinal Scanning Displays (RSD) [6], uniaxial or biaxial 

scanners are employed to perform raster scanning and project 

light beams directly onto the viewer’s retina.  In many 

systems, an electrostatically actuated mirror [7][8] torsionally 

oscillates at a certain frequency providing an optical deflecting 

surface that can be electronically controlled. In other devices 

[9], also operating in torsional mode, an inertial mass is driven 

by the actuation of Lorentz force produced by the passage of 

currents in a circuit that is lithographed on the mass body. 

Typical resonance frequencies depend on the device size and 

high frequency applications depend on system miniaturization. 
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Regarding electromagnetic actuation principles, one usually 

compares between purely electrostatic [10][11] against 

magnetic forces when electric currents are involved, but other 

principles also exist (fluidic, thermopneumatic [12][13], 

ultrasonic etc[14]). The galvanometric principle, for example, 

is able to successfully drive small light beam deflectors [3] 

using weak magnetic field intensities (< 0.5 T).  

Advantages of magnetic actuation are: relatively long range, 

low input voltages and large displacements. In this paper, we 

will are mainly interested in a detailed description of the 

galvanometric actuation under space and time varying 

magnetic fields. The theoretical path [15][16] followed here 

may open new approaches [17] for electromagnetic actuation 

of microscanners serving a variety of purposes. One simple 

example is in the field of laser displays [8][18]. Since 

microscanners are relatively small devices by definition, field 

homogeneity is assumed throughout our treatment, which is 

the same of assuming that field gradients are small. This is an 

important simplifying assumption that set us free from having 

to calculate the exact current distribution of galvanometric 

coils due to field inhomogeneity. From the purely theoretically 

point of view, single axis galvanometers actuated by magnetic 

oscillating fields are nonlinear oscillators exhibiting a rich 

dynamics and a thorough understanding of such dynamics is 

relevant in the context of device control.  

The organization of this paper is as follows: in Section II, 

we review the basic equations of a plate torsionally displaced 

by a single axis and carrying a current loop under the 

influence of general time varying magnetic fields. This may be 

called the general problem of galvanometers [2] which 

modernly appears in the form of magnetically actuated 

scanners. The galvanometric actuation principle is treated as a 

particular case of the general equations governing the 

electromechanical movement. In Section III we solve the 

general case subjected to parallel and transversal oscillating 
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(AC) fields using chosen parameters. As a practical 

illustration, in Section IV we present numerical simulations 

using a silicon microscanner. We detail the oscillation mode 

driven by induction and discuss the resonance coupling due to 

the presence of constant (DC) electric currents for a torsional 

oscillator subjected to both transversal DC and parallel AC 

magnetic fields. Spectral analysis of the device time response 

shows a shift in the mechanical resonance frequency, which 

may be enhanced by changing the coil resistance. The 

resonance shift effect can be suitably used to control the 

frequency of oscillation in scanners. 

II. FORMULATION OF THE PHYSICAL MODEL 

A. The simple galvanometric oscillator 

A plate (rotor) carrying a current loop oscillates about its z 

axis as shown in Fig.1. The deflection angle   is the angle 

between y and the plate normal n. Two independent magnetic 

induction fields By and Bx, pointing toward the y (transverse) 

and x (parallel) directions, respectively, are present in the 

region of the plate. Therefore, these components have 

independent origins. Let us first review here the basic 

dynamical equation for By = 0 (null transversal field), which 

corresponds to the classic galvanometric oscillator. We allow 

however Bx to vary with time. 

 

 
Fig. 1 Schematic drawing representing the plate rotor (oscillation about the z 
axis) and the coordinate reference system. 

 

The plate is subjected to torque: 

,ˆ, 


 nBn        (1) 

with  the coil magnetic moment and n̂  a unitary vector 

normal to the plate as shown in Fig.1. If A is the coil area, 

then: 

 cosxniAB               (2) 

is the strength of the magnetic torque, with n the total number 

of coil turns. The rotor structure has moment of inertia J about 

z which is the only axis to be considered making the dynamics 

one-dimensional. The rotor is suspended by two torsion bars 

such that the elastic torque has characteristic constant k. The 

mechanical equation for the rotor movement is therefore given 

by 

   dissxnAiBkJ cos ,    (3) 

where primes indicate time differentiation. 

 

We remark that in Eq.3 the effect of air damping can be 

modeled by a dissipative term of the form: 

  ...  badiss ,         (4) 

with a and b positive constants. Eq. 4 is an expansion of a 

function of the angular velocity only with linear and a 

nonlinear terms. The description is completed after writing a 

suitable approximation for the driving current perturbed by an 

inducted component due to rotor movement in the field. The 

coil has resistance R and self-induction L, so that the current 

equation may be written  

),,,()(   tvtvRiLi emfg      (5) 

with vemf  the electromotive voltage induced in the coil.  

For small deflection angles (sin   ,  < 10
o
), one can 

approximate the induced voltage by  

   xxemf BBnAtv ),,(  ,    (6) 

where time appears as a function of the temporal dependence 

of B’x. If we further define  = ’, the following set of first 

order differential equations describes the electromechanical 

motion within the assumed approximations: 
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which may be integrated under initial conditions. Before doing 

this, we may keep the second order approach to gain some 

analytical insight in the form of a reduced oscillator equation. 

The first approximation is to neglect the coil inductance (that 

is, admit that the contribution to the overall electric current of 

the self-inducted current is very small, as is the case of 

microcoils). In this case: 

 ,
)(
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g
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nA

R
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i      (8) 

in such a way that one can substitute (8) into (3) and obtain  

,
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   (9) 

which is an equation for a driven dissipative parametric 

oscillator with main frequency:  

J

k
0 .               (10) 
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Assuming harmonic oscillation for driving fields and 

potentials, besides the main contribution of 0  and x , that 

is, if  

),sin()(
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    (11) 

with g and x constant phases, it is easy to see by direct 

substitution into Eq. (8) that there are resonance relations 

among the frequencies g, x and 0:   

,

,
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If v0=0 and the rotor is released at a certain initial angle, 

solutions of Eq. (9) will exhibit damped movement (even if a 

= 0 and b = 0) with characteristic damping time 

 20

4

x

dampe
nAB

JR
 .            (13) 

Starting from the rest position, it is impossible to find any 

solution (t)0 for t  0 given that v0=0  even if Bx0  0 and B 

> 0. In other words, the system cannot be driven by purely AC 

parallel fields. This is because the second term in Eq. (9) for 


2
 timely averages to zero and cannot excite movement. 

 

B. Oscillator with transverse field 

Let us now introduce the transverse component By. The 

mechanical equation becomes:  

  )(cossin   dissxy BBnAikJ ,    (14) 

for which the same air damping model (Eq. (4)) is used. The 

magnetic flux intensity is given by  

  cossin yxB BBA  .        (15) 

To first order in  and ’, the electromotive potential is 

approximately will be given by: 

     xyxyemf BBBBnAtv ,, .  (16) 

The resulting second order differential equation under non-

linear air damping (a = 0 in Eq. (4)) is  
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Eq. (17) still represents a damped parametric oscillator but 

with more complicated driving terms. Again it is convenient to 

write 

 yyyy tBtB   sin)( 0 .     (19) 

Eq. (17) and (18) were again obtained under the small 

inductance approximation 

,
),,()(
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and Eq. (16). If inductance is taken into account, the presence 

of a transversal field gives rise to the set of first order 

differential equations: 
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that can also be integrated given the initial conditions. 

It is now possible to distinguish between five types of 

oscillators depending on the variable field and potential 

driving conditions. Table 1 is a summary of these conditions 

for each oscillator case which are further detailed in the 

following. 

Table 1 

 
 

1 – Simple galvanometric oscillator driven by Lorentz 

force. Oscillating movement under the presence of DC parallel 

field and external AC voltage; 

2 – Symmetrical to case 1: simple galvanometer driven by 

parallel AC field and powered by a constant voltage supply; 

3 – Parametric oscillator of the type x”+ [1+f(t)]x = 0. The 

dissipative term limits the resonant behavior so that the 

mechanical movement is damped for (0)  0;  

4 – Inductive oscillator driven by transversal AC field. No 

external electric potential necessary; 

5 – Driving mechanism similar to case 2, but there is a shift 

in the mechanical resonance frequency in the presence of a 

DC transversal field due to electromechanical coupling. This 

case is explored in detail in Section D. 

 

According to Table 1, the galvanometric oscillator requires 

a condition in which B’x = 0 and B’y = 0. In case 2, v’g = 0, that 

is, there is an approximately static current in the coil. The final 

result is similar to case 1. In all cases, we notice the presence 

of parametric and dissipative terms (in Eqs. 17 and 18) that do 

not change the dynamical response significantly. As in the 
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case treated in Section II.A, the parametric terms containing 

the fields and their time derivatives average to zero. The 

magnetic friction just adds more dissipation to the existing air 

damping.  

In case 4, the coil is short circuited (vg = 0) and transversal 

AC and parallel DC fields are present. This constitutes a type 

of inductive oscillator [19] where transference of energy is 

carried out by current induction in the coil. The system can be 

optimally driven by an AC field with both parallel and 

transversal components. Since the field distribution in the coil 

area is arbitrary, there is an optimal arrangement for these 

fields that can be found by setting: 
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and substituting into Eqs. (11), (19) and (17). The optimal 

angle is 

,2,1,0,
24

 nn


         (23) 

Finally, according to Eq. (18), for term F, the condition of 

resonance for the induced oscillator requires x = y = 0/2.  

III. NUMERICAL SIMULATIONS 

A. Oscillator parameters and initial conditions 

In order to illustrate each of the cases, we build numerical 

simulations by integrating Eq. (7) and Eq. (21). To provide 

numerical input with realistic data, we use the model of a 

microfabricated silicon scanner. The device is composed of a 

squared rotor with 5 mm X 5 mm suspended by two torsion 

bars rigidly connected to an external rectangular frame with 

12.5 mm X 25 mm. Near the rotor edges, a planar coil with 20 

turns made of Au/Cr is deposited and connected to the 

external driving circuit. The magnetic field strength used in 

the simulations is between 0.1T and 1.0 T, what can be easily 

achieved by neodymium magnets. We apply a non-linear 

damping law, that is, we set a = 0 in Eq. (4).  

As a value for b we use 5.010
-13

 Kg m
2
. In fact, the general 

dynamical behavior is not severely affected by assuming a 

particular damping law (provided the friction is small). Non-

linearity affects the maximum deflection angle as a function of 

the applied potential in the coil. For such microfabricated 

silicon scanner we have [Erro! Indicador não definido.]: J = 

3.2810
-11

 Kg m
2
, A = 1.6710

-5
 m

2
, R = 966, k = 3.0810

-3
 

Pa m
3
, n = 20 and L = 2.3 H. Eq. (20) is well justified for 

such small inductances since the contribution of iL   is 10
-5

 the 

value of max(vg)  1 V. Were L > 1.5mH, which is too large 

for microcoils, one would need to integrate the more general 

system given by Eq. (21). According to Eq. (10), the 

mechanical resonance occurs at f0 = 1442 Hz. For B0  0.27 T, 

one can calculate the time constant for magnetic friction, Eq. 

(13), which is 15.5sec. The effect of air damping upon the 

oscillation amplitude is however much larger than the 

magnetic friction. 

To integrate Eq. (21) for small coil inductances, we 

substitute the current equation Eq. (20) so that 
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  (24) 

Stable solutions are obtained with Runge-Kutta method of 

fixed step [20] using, for example, 2
16

 steps per second. 

Adaptive step integrators should be employed to integrate Eq. 

(21) in the presence of small inductances. The response 

spectrum for all state variables can be obtained by applying 

conventional Fast Fourier Transform (FFT) [20].  

B. Cases of parallel fields 

Case 1 can be demonstrated with fg = 1400 Hz, fx = 1600Hz, 

B0x = 0.27 T, v0 = 1 V, a = b = 0, g = x = 0. The initial state 

vector is (, ) = (0,0). Fig. 2 provides time plots for the 

deflection angle and current, and a phase-space plot for (, ). 

Fig. 3 is the spectral plot (FFT of (a) and (b) in Fig. 1) for the 

angle (dark line) and current (dotted lines) showing the 

spectral components that are present in the mechanical and 

electrical responses. Obviously, the amplitude of the 

mechanical motion is maximum when Eq. (12) is obeyed 

(which is not the case shown in Fig. 3). If there is a constant 

voltage applied to the coil, the galvanometer oscillates with 

the presence of an AC parallel field. This case (2 in Table 1) is 

symmetrical to a constant parallel field and alternate current 

flowing in the coil. To show an example, we make fg = 0 and 

g = /2. The field frequency is fx = 1500Hz and the applied 

voltage is v0 = 1 V. Again the initial condition is (, ) = (0,0) 

and the integration time is 1s. Fig. 4 is the spectral distribution 

of the response movement, showing two main peaks for the 

resonance and the driving field frequencies. The current in the 

coil is approximately constant and equal to 1.035 mA. 

 

 
Fig. 2 (a) Current in Amp for 10ms and (b) deflection angle in rad during the 
first 20ms of time evolution for the galvanometer with magnetic parallel field 

oscillating at 1600Mhz and driving voltage of 1V at 1400MHz. (c) Phase 

space plot for the pair (, ) in rad and rad/s for the first 1000 points. 
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Fig. 3 Spectral response of the angular oscillation and current showing the 

effect of external parallel field fx = 1600Hz and driving voltage fg = 1400Hz. 
Dots represent the spectral response for the current for which only the driving 

potential is important. f0 = 1542 Hz is the mechanical resonance frequency. 

 

 

 
Fig. 4 Case 2. Logarithm of the FFT amplitude for   with constant current 
applied to the coil and presence of parallel AC field (fx = 1500 Hz). 

 

C. Cases of transversal field. Inductive galvanometer 

 

According to Eq. (17) and (18), if Bx = 0, there is no driving 

term in the system. Therefore, a purely transversal field has no 

effect on the mechanical motion if  (0) = 0.0, that is, there is 

no movement and only an AC current in the coil induced by 

the transverse field frequency is present. However, if the 

initial condition is such that  (0)  0, the resulting motion is 

unaffected by the presence of the field. To show a numerical 

case, we make (, ) = (0.017, 0.0) and use B0y = 0.7 T, fy = 

1400 Hz, y = 0 and v0 =0. The spectral response of the current 

and mechanical movement is as shown in Fig. 5, which is an 

example of Case 3. In this case, the response is similar to a 

damped oscillator with no external excitation. 

Fig. 5 Spectral response of Case 3 for an AC transversal field only. The field 

is unable to affect the mechanical movement. The initial angle is 1 degree. 
The current response shows two peaks, one for the driving field (1400Hz) and 

a second due to the induced voltage at the resonant frequency. 

 

The inductive scanner requires the actuation of two fields 

for the conversion of magnetic into mechanical energy: a 

parallel DC and a transverse AC fields. The transversal field is 

responsible for the induction of currents in the coil which are 

driven by the constant parallel field generating stable motion 

similar to Case 1.  Case 4 is therefore interesting to be studied 

because it constitutes a new driving mechanism for scanners. 

Simulation parameters for this case are as follows: B0x = 0.2 T, 

fx = 0, x = /2, B0y = 0.2 T, fy = 1600 Hz, y = 0, v0 = 0 and (, 

) = (0,0). Results of the integration during 1s and the spectral 

response are shown in Fig. 6. The movement is stable and 

restricted to a well-defined region in the (, )-plane. The 

spectral distribution for the angle and current is very similar to 

Fig. 5. Two spectral components appear in this case: the 

resonance and the magnetic field driving frequency. 

Obviously, for fy  f0, the maximum angular deflection is 

obtained.  

 

D. Resonance frequency shift 

The last case of interest is the actuation of a constant 

transversal field, a constant current and an alternate parallel 

field. This is similar to case 2, but the DC transverse field 

changes the expected resonant behavior of the rotor. If we 

introduce such driving conditions in Eq. (17) and (18), we can 

neglect the contribution of BxB’x that appears in the equation 

for , since this term averages to zero. Therefore, one obtains 

an oscillator with a modified resonance frequency: 

,1
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which is a new “natural frequency” depending on the intensity 

of the applied transversal field. The shift in frequency is in 

fact very small so that we can write: 

][
4

1

0

Hz
RJ

BnAv
f

yg










 .                  (26) 



BRAZILIAN JOURNAL OF INSTRUMENTATION AND CONTROL  

 

DOI:  ISSN: 2318-4531 

 

14 

 

 

 

 
Fig. 6 Inductive galvanometer: (,) for the first 1000 integrated points 

(above) starting from rest. Spectral distribution of the mechanical response 

and current (below). There is a prominent peak at the transversal field driving 
frequency. 

 

Fig. 7 is the spectral mechanical response for vg = 6 V, B0x = 

0.2 T, fx = 1600Hz, fy =0Hz, x= 0, y = /2, v = /2 and B0y   

in the interval between 0.0 T and 1.2 T. The shift in resonance 

frequency reaches 0.5Hz when B0y = 1.0 T. At B0y = 1.2 T, 

Eq.(26) results in f = 0.62 Hz. The shift in the resonance 

frequency can be understood as a consequence of the coupling 

between the coil magnetic moment and the field. This 

coupling is described in terms of the potential energy: 
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Fig. 7 Spectral distribution (f) in the interval from 1535Hz to 1550Hz 
showing the shift in the mechanical resonance frequency as the transverse 

magnetic field intensity is increased. For By = 0 T, the resonance peak is at 

1542.2Hz. The change in the resonance frequency is 0.62 Hz at By = 1.2T.  

 

the quadratic term acting as a perturbation to the elastic 

potential, therefore shifting the resonance frequency. The shift 

signal depends on the product of the applied potential and 

field signals. Since the effect is proportional to the current, the 

shift can be increased if the coil resistance becomes small. 

Since the resistance of common metals (Au, Cr, Al) is strongly 

influenced by temperature, it is expected that the magnetic 

perturbation of the mechanical movement will be influenced 

by temperature changes. The effect described by Eq. (26) is 

important in the theory of mechanical scanners since it allows 

the control (through vg and B0y) of the resonance frequency. 

Therefore, fine scanner calibration can be electronically 

achieved, which is important given the expected uncertainties 

involved in the microfabrication process – minimal variations 

in the final rotor mass distribution for example. 

IV. CONCLUSION 

Thus work describes driving mechanisms in galvanometric 

oscillators, modernly applied in the form of scanners. Data 

from a silicon microscanner were used to numerically provide 

examples of the expected behavior for five main cases 

depending on external driving conditions and feeding 

potentials. Torsional oscillators can fundamentally work by 

the actuation of Lorentz force under three magnetic regimes: 

DC field and AC current, DC current and AC fields or 

induction of currents by AC fields (short circuited coil). The 

first and second driving regimes are applications of similar 

principles used in current measurement devices and motors. 

The inductive oscillator [Erro! Indicador não definido.] is 

fed by parallel and transversal field components and the 

efficiency of the resulting system is severely affected if the 

amplitude of the parallel field is weak. It was shown that a 

dipole AC field at 45 degrees in relation to the coil plane can 

efficiently drive the oscillator. If the transversal field 

component is constant, the presence of a constant current in 
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the coil can induce oscillation in the system at both resonance 

and parallel AC field frequency with a small but measurable 

shift in the resonance frequency. The effect can be enhanced 

by using small resistance coils.  

 Therefore, such resonant control could be used to build 

galvanometric filters. More complex devices [21][22] (for 

example, double scanners with both X and Y degrees of 

freedom) could also benefit from the frequency shift induced 

by magnetic coupling with an external transverse fields. 

Experimentally, the observation of frequency shift can be 

implemented by the use of two independent scanners used as 

laser deflectors of the same light beam. If both have 

commensurate resonance frequencies, the expected projected 

light pattern (Lissajous) will exhibit noticeable changes upon 

any slight variation in one of the mechanical resonance 

frequencies, assuming that the phase difference between the 

system pair is well controlled. Other influences could also be 

studied as, for example, changes in the resonance frequency 

due to temperature variations [13] of the rotor body since Eq. 

(26) explicitly depends on coil resistance which is often 

temperature dependent. Therefore, such resonant control could 

be used to stabilize [23][24] microscanners in the event of 

temperature change. 
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