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Robust Digital Controllers via H∞ Design for Lurie
Type Systems

Rafael F. Pinheiro and Diego Colón

Abstract—The goal of this paper is to present a new method-
ology for the design of robust digital controllers for Lurie type
systems via the mixed-sensitivity H∞ technique with parametric
uncertainties. For the purpose of comparing results, a well-known
controller design approach via linear matrix inequalities with
polytopic uncertainties is presented and used. An example is
proposed, where numerical simulations are performed to ensure
the effectiveness of the new controller, showing that the new
methodology provides better results.

Index Terms—Robust Digital Controller, Lurie Problem, Ab-
solute Stability, Robust Control, H∞ Control.

I. INTRODUCTION

In 1944, due to a problem of automatic control of an aircraft,
the Lurie problem was designed [1], which is also famous in
the literature as an absolute stability problem. It started the
groundwork for a significant field of the control engineering,
which is Robust Control, running out on substantial contribu-
tions to mathematics and engineering.

Large number researchers have engaged in this problem for
the years 50’s and 60’s, among whom can be cited in [2],
with the well known Aizerman conjecture, Krasovskii (1953)
[3], Popov (1961) [4], and Kalman (1963) [5]. On a path,
investigation on the Lurie problem proceeds a larger jump in
the 80’s, when works initiate to spring up which connected the
problem to other subjects and procedures such as chaos and
chaos synchronization [6]; neural networks [7]; switched linear
systems [8]; convex approach to the Lurie problem [9]; linear
parameter varying (LPV) system [10]; uncertain systems [11];
and µ analysis [12], [13]. Additionally, its research remains
contemporary in the aeronautic area, as can be viewed in [14].

To fix this problem, Nyquist criterion, Lyapunov functions
and Linear Matrix Inequalities (LMI) are utilized. For exam-
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ple, the Circle criterion [15] uses the method of Nyquist; and
the Popov criterion [4], typically less conservative than the
Circle criterion, utilize Lyapunov functions in its demonstra-
tion. More recent works, like [16], [17], [18], [19], [10] also
utilize Lyapunov functions and LMI.

On the other hand, the Lurie problem is a peculiar type
of robust control problem, consequently, sophisticated robust
control procedure like parametric uncertainty and structured
singular value (SSV), due to the work’s origin on [20], can be
utilized for designing controllers in the Lurie structure. New
works have emerged using Doyle’s techniques [21]. Hence,
this work starts the presentation of results in the area of
digital control for the Lurie Problem using some techniques
from Doyle’s theory and also following Skogestad’s ways [22],
however, these do not present significant results for discrete
systems. In addition, this paper is the result of suggestions for
future research given by the articles [23], [24].

The main contribution of this work is the presentation of
a new approach to the design of controllers for Lurie type
systems in discrete time. It can be seen that in [25] a new
design methodology is conducted via mixed-sensitivity H∞
with parametric uncertainties, in the continuous time, with
the suggestion to extend to discrete time. Thus, this work
presents the discrete time extension of design of controllers via
mixed-sensitivity H∞ for Lurie type systems with parametric
uncertainties. Regarding the new applications of this theory,
we visualize the possibility of great contribution in the areas
of health and renewable energy.

In order to perform a comparison of methodologies, an
approach that uses LMI and polytopic uncertainties was pre-
sented. There are numerous works that use this methodology
for Lurie type systems ([26], [27], [28]). Here the technique
is presented with the theoretic basis from the: [29], [30], [31],
[32] and [33]. A simple example is given for the purpose of
comparison and didactic understanding of the theory presented
in this work.
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The remaining of this work is organized as follow: In
sections II and III, we treat in continuous-time to understand
the problem and define the necessary tools to the approaches
presented in this paper. The main results are given in Section
IV, where we introduce discretization and design methods. In
Section V, we deal with a numerical example and finally, in
Section VI, we have the conclusion that summarizes the main
discoveries and proposes future research.

II. PROBLEM STATEMENT

The Lurie problem in SISO case, or absolute stability
problem, consists in finding necessary and sufficient conditions
to the global asymptotic stability of the system of Figure 1.
In this system, we have a linear dynamics represented by the
system L, and the function f(σ) represents a nonlinearity.

Fig. 1. Block diagram of the Lurie type system.

Considering r1 = 0, in (1) we have a system of differential
equations, which was known in the literature as Lurie type
system: {

ẋ = Ax− bf(σ)
σ = cTx,

(1)

where x ∈ Rn is the state vector, and b, c ∈ Rn, A ∈ Rn×n are
fixed matrices. Generally, the nonlinearity f(σ) is a continuous
function restricted to the first and third quadrants of the plane
(see Figure 2). It belongs to one of the following families:

F(0,k] := {f | f(0) = 0, 0 < σf(σ) ≤ kσ2, σ ̸= 0},

F(0,k) := {f | f(0) = 0, 0 < σf(σ) < kσ2, σ ̸= 0},

F[k1,k2] := {f | f(0) = 0, k1σ
2 ≤ σf(σ) ≤ k2σ

2, σ ̸= 0},

F∞ := {f | f(0) = 0, σf(σ) > 0, σ ̸= 0}.

Note that, the functions f may be not precisely known,
and pertaining to an uncertain family, which justifies why the
Lurie problem can be considered one of the founding of robust
control.

III. THEORETICAL BACKGROUND

This section sets forward the essential tools to build the
main contribution of the paper.

Fig. 2. Types of functions f : a) F(0,k], F(0,k); b) F[k1,k2]; c) F∞.

A. H∞ Mixed-Sensitivity Method

This procedure is well known in the literature and a large
number of works has tackled similar problems like in [20],
[22] and [34]. It utilize sensitivity function S = (I+GoK)−1

and T = (I + GoK)−1 GoK complementary sensitivity for
the design of controllers.

We intend to design a controller via mixed-sensitivity H∞
(S/KS/T), where the objective is to minimize the H∞ norm
of (2):

∥N∥∞ = maxωγ(N(jω)) < 1; N =

 WpS
WuKS
WIT

 , (2)

where γ, in (2), indicate H∞ upper bound, which may be
interpreted as the measure of the matrix N at any particular
frequency. Wp, Wu and WI are weight functions. The weight
WI is utilized for modeling the uncertainty and is specific by
the uncertainty model of the family of plants. The weights Wu

and Wp are selected by the designer to reflect the expected
specifications for the closed loop system. Wu constitute a
weight for the control effort. The weight Wp was selected
as introduced in [22], and depicted as follows:

Wp =
s/M + wb

s+ wbA
, (3)

where: ωb is the minimal bandwidth frequency (specified as the
frequency where S(jω) crosses from below); A is parameter
for S(s) to be little in low frequency, this causes a little
stationary error, doing A ≤ 1; and M is maximal peak
magnitude of S, ∥S(jω)∥∞. Typically M = 2.

In respect of uncertainties modelling, [22] gives multiple
alternative for the designer to select the type of uncertainty that
is most appropriate for the design. In Figure 3, the uncertainty
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model known as inverse multiplicative input is introduced and
defined as:

Gp(s) =
Go(s)

1 +WI(s)∆I(s)
, ∥∆I∥∞ ≤ 1. (4)

The transfer function Go(s) is the nominal model of the
plant and Gp(s) constitute the disturbed plant, which means
the uncertainties are considered in Gp(s). The variable ∆, in
(4), indicates the normalized perturbation with the H∞ norm
less or equal than 1.

Fig. 3. Inverse multiplicative input uncertainty.

In Figure 4, the extended plant is presented, included the
weights Wp, WI e Wu. In this method, the weights are the
fine tuning tools utilized to choose the best adjustment that
suffices the request for a specific situation.

Fig. 4. Control diagram with weights.

The sub-optimal controller H∞ is achieved by solving the
optimization problem:

minK∥N(K)∥∞, (5)

where K constitute a stabilizing controller.
Remark that, a similar method may be applied in the case

(S/KS), meaning that the following constraints must be
examined:

∥N∥∞ = maxωγ(N(jω)) < 1; N =

[
WpS
WuKS

]
. (6)

B. ∥H∞∥ State Feedback Controller Design via LMI

The control law can be defined as:

u(m) = Kx(m). (7)

In [30], the LMI constraint to design a state feedback
controller (7) is presented. The controller can be designed
using the following theorem:

Theorem 1: There exists a controller in the form (7) such
that the inequality ∥H∥2∞ < γ holds if, and only if, the LMI:

P AX +BL J 0
• X +XT − P 0 XTCT

z + LTDT
z

• • I DT
z

• • • γI

 > 0, (8)

holds, where the matrices X and L and the symmetric matrix
P are the variables. The controller is obtained by K = LX−1.

The proof for this theorem can be found in [30].

C. Polytopic Uncertainty

A system subjected to uncertainties can be represented as a
polytopic system as follows:

Ga :

{
ẋ(t) = Ax(t) + Bu(k)
y(t) = C(t)x(t),

(9)

and if these parameters with uncertainty vary within a known
range, it is possible to describe the system matrices as vertex
belonging to a polytope. Each vertex represents a linear system
with a specific combination of the uncertain parameters.

D. Modeling Nonlinearity by Means of Uncertainties

1) Parametric Uncertainty: Over the years, many necessary
and sufficient conditions for the absolute stability of Lurie type
systems have been derived, as in [6], [7]. Now assume that we
wish to enhance the stability and performance on a Lurie type
system. The following is a methodology that has been obtained
from [25].

To transform the block diagram of Figure 1 into a similar
form of Figure 4, we replace f by a parametric uncertainty.
This new system can be interpreted as an equivalent family of
plants Gp.

Let f be as exhibited in Figure 5. The idea is to substitute
f by a set of linear functions kσ, where k is the uncertainty.
In practice, the block f(σ) can be replaced by the uncertain
block gain α. From the diagram of Figure 1, we acquire the
perturbed system as follows:

ẋ = Ax+ b(r1 − αcTx) → ẋ = Ax+ br1 − bαcTx

→ ẋ = (A− bαcT )x+ br1.

Making Aα = (A − bαcT ), where α = k
2 + k

2 δ, | δ |≤ 1,
we have: {

ẋ = Aαx+ br1
σα = cTx.

(10)

Later, we will use the system (10) to obtain the transfer
function in discrete time.
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Fig. 5. Mapping 0 < f(σ) ≤ kσ.

2) Polytopic Uncertainties: Consider that the nonlinearity
is bounded in a section in the first and third quadrants bounded
by a frontier k, as introduced in the Figure 5. The change to a
polytopic uncertainty is designated by the following equations:

Al = A+BρC, (11)
ρ ∈ [0, k]. (12)

where Al constitute the polytope vertex. Broadly the concept
above for a system where there is more than one nonlinearity,
the equation to obtain the polytope vertex is given by:

Al = An×n +Bn×q

ρ11 . . . ρ1q
... . . .

...
ρq1 . . . ρqq


q×q

Cq×n. (13)

With the generalization introduced in (13) it is feasible to
establish a vertex for each combination of nonlinearity, and
also it is possible to think about some coupling between
the nonlinearity. After obtaining the vertex, the polytope is
obtained using the following equations:

A(β) =

{
V∑
l=1

µlAl, µl ≥ 0,

V∑
l=1

µl = 1

}
(14)

It is simple to employ the polytope in the LMI constraint
exhibit in the Theorem 1. The method is simply adding the
index l in the LMI constraint presented in the Theorem 1:

P AlX +BlL J 0
• X +XT − P 0 XTCT

z + LTDT
z

• • I DT
z

• • • γI

 > 0, (15)

where the insertion of the index l means that there are now l
LMI constrains, instead of only one constraint, which means
an increase of conservatism in the optimization problem. For
that reason, the Theorem 1 loses the necessary condition, and
now provides only sub-optimal condition. And, as the number
of vertices increases, the optimization problem feasibility
decreases.

IV. DISCRETIZATION PROCEDURES AND METHOD OF
OBTAINING THE CONTROLLERS

For the discretization process and obtainment of the con-
trollers, a class of Lurie type systems (1) with one nonlinearity
and the matrix A Hurwitz and for σ ̸= 0, 0 < f(σ) ≤ kσ,
and for σ = 0, we have f(0) = 0.

A. Discretization with Parametric Uncertainties

Supposing the existence of parametric uncertainties in the
Lurie system in the discrete-time domain, the Zero-Order-
Holder (ZOH) is not appropriate for the task, due to the fact
that the information about the nonlinearity may be lost.

Consequently, for the Lurie problem, a discretization using
the finite difference methods fits completely. This is also
known as the Euler method by difference in forward rectan-
gular. So, a differential equation is transformed into a finite
difference equation:

ẋ(n) ∼=
x[n+ 1]− x[n]

Ts
. (16)

So, (10) in the discrete form becomes:{
x[n+1]−x[n]

Ts
= Aαx[n] + br1[n], (17)

knowing that x[n+ 1] = zX(z), x[n] = X(z) and r1[n] =
R1(z), we get the z-transform of the preceding system, its
transfer function, and finally the inverse multiplicative input
uncertainty:

Gp(z) =
X(z)

R1(z)
=

G(z)

1 +WI(z)∆I(z)
, ||∆I ||∞ ≤ 1. (18)

Thereby, the Lurie type system in continuous-time of Figure
1 is modify into the discrete-time system of Figure 6.

Fig. 6. Lurie type system in discrete form.

The H∞ sub-optimal discrete-time control problem is to
discover an internally stabilizing controller K(z) such that,
for a pre-specified positive value γ:

||FL(P,K)||∞ < γ. (19)

N of equation (6) is connected to P and K by a lower
linear fractional transformation (FL), as follows:

FL(P,K) = P11 + P12K(I − P22K)−1P21 = N, (20)

in such a way that link equations (19) and (6). The design
of the generalized plant P is clarified in [22]. The controller
is obtained using the Matlab functions hinfsyn or mixsyn.
These functions obtain the controller solving two Riccati
equations in order to satisfy conditions of asymptotic stability
for the control problem (see [35]).
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B. Discretization with Polytopic Uncertainties

The discretization procedure is a routine method and there
are some techniques to perform it, like the Zero-Order-Holder.
Yet, the commonly used discretization process imposes some
challenges for polytopic systems. That happens as an effect of
the polytope derived by discretizing all the continuous-time
matrices belonging to a given polytopic system, which can
result in the loss of convexity, making impossible to use any
convex optimization process to design the controllers.

Thus, common method like the Zero-Order-Holder becomes
inadequate for the task. Nevertheless, there are some pro-
posals in the literature to address this challenge, like [29]
and [31]. Those method are numerical solutions or Taylor
series expansions of the exponential matrices connected to the
discretization with a finite number of terms. In the current
paper, we use the solution provided by [33], which is a Taylor
series expansion with variable number of terms l. This feature
is convenient, because it is necessary to bound system norm
and the residue norm to assure the performance. For that, we
employ the Small Gain Theory. The proof can be found in [32].
Taking into account the continuous-time polytopic system:

ẋ(t) = Acont(β)x(t) +Bcont(β)u(t), (21)

the equivalent discrete-time polytopic system is:

x(n+ 1) = Adisc(β)x(n) +Bdisc(β)u(n), (22)

where it is possible to write the discrete matrices as:

A(β) = Al(β) + ∆Al(β), (23)
B(β) = Bl(β) + ∆Bl(β), (24)

where Al(β), Bl(β) are the Taylor series expansion
and ∆Al(β), ∆Bl(β) Taylor series residue. The matrices
Al(β), Bl(β),∆Al(β) and ∆Al(β) can be calculated as:

Al(β) =

l∑
j=0

Acont(β)
j

j!
T j , (25)

Bl(β) =

l∑
j=1

Acont(β)
j−1

j!
T jBcont(β), (26)

∆Al(β) = eAcont(β)T −Al(β), (27)

∆Bl(β) =

(∫ T

0

eAcont(β)sds

)
Bcont(β)−Bl(β),(28)

where l ∈ N is the number of terms in the Taylor expansion
and T > 0[s] is the sampling time. After expanding in Taylor
series the polynomial matrices must be homogenized, for
details see [33].

V. NUMERICAL EXAMPLE

For the purpose of illustrating the results, comparisons, and
verification of the effectiveness of the method, we present
this example, which aims to design robust digital controllers
according to Figure 7, for the Lurie system (29) with Ts = 0.1
and k = 2 (in this case f inF(0,2]).

Fig. 7. Block diagram of the numerical example.

 ẋ1 = −x1 + f(σ)
ẋ2 = −x2

σ = x1.
(29)

The matrices for (29) are:

A =

[
−1 0
0 −1

]
, b =

[
1
0

]
and

cT =
[
1 0

]
.

The example is divided into two parts. Part A contains
the design of controllers using the new methodology, that
is, mixed-sensitivity H∞, which was subdivided into design
(S/KS) and (S/KS/T ) with Parametric Uncertainties. Part
B contains the design via LMI and polytopic uncertainties,
which is used to compare with the new methodology. In all
designs, time simulations were performed.

A. Design via Mixed-Sensitivity H∞ (S/KS) and
(S/KS/T ) with Parametric Uncertainties

First, we replace α = k
2 + k

2 δ, | δ |≤ 1. So, using (17)
and (18) we get the weight for uncertainty and the nominal
plant G(z), with this, we have: G(z) = Ts

z−1+Ts+ kTs
2

and

WI(z) =
kTs
2

z−1+Ts+ kTs
2

.

1) Controller design via (S/KS) approach: In order to
obtain Wp, we use (3) and to its parameters we choose M = 2,
A = 0.005 and wb = 10 as suggested in [22]. Using the same
method as presented in section III-A Wp(z) = 0.5z+0.4975

z−0.995
is obtained. We discretize Wp using the function c2d of the
Matlab. For the penalization of control, we choose: Wu =
0.0561. This value was achieved in a few tries, until we find
the best fit. After achieving the plant P and using the Matlab
function hinfsyn, the following controller is obtained:

K(z) =
9.932z4 − 15.84z3 − 3.605z2 + 15.84z − 6.325

z4 − 1.792z3 − 0.2032z2 + 1.786z − 0.7907
,

(30)
with achieved gamma value: γ = 1.0046.

2) Time Simulation (S/KS): The first simulation is the
step response of some plants in the family of parameters 0 <
α ≤ 2 of Gp randomly chosen. In Figure 8, it is feasible
to note that the controller behaves similarly for all the plants
examined. Following, we conducted simulations via Simulink
with nonlinearity equal to a hyperbolic tangent, as exhibited in
Figure 9. Herewith, we obtain responses to sine and step wave
of amplitude equal to 5, as shown in Figure 10 and Figure 11.
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Fig. 8. Step response of the family of plants with S/KS controller for
0 < α ≤ 2.

Fig. 9. The hyperbolic tangent.

Note that the controller behaves as expected, following the
reference signal. Even with the presence of hyperbolic tangent
as nonlinearity, the controller still tracks follows the reference
in both simulations.

3) Controller Obtained (S/KS/T ): In order to obtain Wp

we use (3) and for its parameters we did a little different than
proposed in [22]: we have selected M = 5, A = 0.005 and
wb = 1 rad/s, and with a fine adjustment of these parameters
we get a good value for the norm. We discretize Wp using the
function c2d of Matlab, obtaining: Wp(z) =

0.2z−0.1
z−0.9995 . For the

control penalization, we opt for Wu = 0.01; this value was
also obtained in a few tries. According to the Matlab functions
mixsyn we obtain the controller:

K(z) =
7.497z3 − 4.397z2 − 7.358z + 4.862

z3 − 1.024z2 − 0.5958z + 0.6201
, (31)

with gamma value (norm): γ = 1.0064.
4) Time Simulation (S/KS/T ): In a similar manner to the

(S/KS) design, we test the robustness of the controller. We
have in the Figure 12 the response to the unitary step, for
not only the nominal plant G, but for other plants randomly
chosen according to the uncertainty parameter 0 < α ≤ 2 of
Gp.

Correspondingly, to the previous simulation, the controller
works as planned for all the tested plants. In simulations via
Simulink with nonlinearity equal to the hyperbolic tangent, we
have in Figure 13 and Figure 14 the responses to sine and step
inputs with amplitude 5.

Fig. 10. Response to sine wave with digital controller by mixed-sensitivity
(S/KS) with continuous plants.

Fig. 11. Response to step wave with digital controller by mixed-sensitivity
(S/KS) with continuous plants.

B. Design via LMI and Polytopic Uncertainties

1) Controllers obtained: The Theorem 1 is used to obtain
the controller and also the gamma value.

∥H∥∞ Controller via LMI gamma value
l = 2 [ -16.4241 ] 1.4805
l = 3 [ -24.6527] 1.0059
l = 4 [ -29.4739 ] 1.2421

TABLE I
CONTROLLER OBTAINED USING THEOREM 1 FOR l ∈ [2, 3, 4].

Table I shows the number l (LMI restrictions) and the
obtained norm. Note that for a l = 3, although it increases the
conservatism slightly, we have a smaller value of the norm.

2) Temporal Simulation: We use to simulate nonlinearity
the function f(σ) = tanh(σ), as shown in Figure 9. Differ-
ently from the two previous cases, the controller using the
LMI approach as shown in Figure 15 presented a higher error,
on the other hand, there is no presence of overshooting.
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Fig. 12. Step response of the family of plants with S/KS/T controller for
0 < α ≤ 2.

Fig. 13. Response to sine wave with digital controller by mixed-sensitivity
(S/KS/T ) with continuous plants.

VI. CONCLUSION

In this work, we developed a new procedure for obtaining
robust digital controller for a class of SISO Lurie type systems
via mixed-sensitivity H∞. For comparison, we designed a
controller via LMI with polytopic uncertainties, which is a
well-known approach in the literature. This controller, for the
proposed example, presented a non-removable error, however,
the problem could be easily solved with an integrator. The
controller via mixed-sensitivity H∞ (S/KS) presented a
smooth oscillation in steady-state, which we could not remove.
On the other hand, the controller via mixed sensitivity H∞
(S/KS/T ) showed no significant oscillation or error and, in
our analysis, performed best for the proposed example.

As a limitation of the method presented, we can consider
that there is not yet a general procedure for any type of plant.
We intend, in future work, to solve this question similarly as
done for the continuous case in [24], on the way to prove
stability and performance robustness in any frequency band.

Fig. 14. Response to pulse wave with digital controller by mixed-sensitivity
(S/KS/T ) with continuous plants.

Fig. 15. Graphics obtained using all the controllers designed via LMI and
polytopic uncertainties, and without controller (w/o).

Also, as future work, we are planning to develop a procedure
to obtain a digital controller for multiple inputs, similar to
what was done in [23] for the continuous case.

In terms of applications, the following are suggestions for
future works in relevant areas:

• Application in the area of renewable energies. The results
constituted in this work may be helpful in the designing
robust controllers for power take-off (PTO) of wave
energy converters (WEC). It is noted in papers such as
[36], [37], [38], [39], [40] the demand of robust con-
trollers, because in WEC-PTO systems, there are many
nonlinearities (which can be modelled as uncertainties,
see [23], [24], [25]) in actuators, valves, accumulators,
temperature variations, and sea conditions.

• To apply the method to a discrete Hopfield neural network
(as made by [41]), which is used to simulate associative
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memory. This memory can be considered analogue to the
human memory, and so it can be used for modeling a
neuropathology, for example the Alzheimer’s disease. In
this context, the controller could be used to assuage the
effects of the disease.

• Another application in the healthcare area, might be for
controlling cardiac devices [42], [43], [44], since there
are many variables with uncertainties in this area.
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Controladores Digitais Robustos via projeto H∞
para Sistemas do Tipo Lurie

Resumo: —O objetivo deste trabalho é apresentar uma nova
metodologia para o projeto de controladores digitais robustos
para sistemas do tipo Lurie via técnica da sensibilidade-mista
H∞ com incertezas paramétricas. Para fins de comparação de re-
sultados, uma conhecida abordagem de projeto de controladores
via desigualdades matriciais lineares com incertezas politópicas é
apresentada e utilizada. Um exemplo é dado onde são realizadas
simulações numéricas que garantem a eficácia do novo contro-
lador, mostrando que a nova metodologia proporciona melhores
resultados.

Palavras-chave: —Controlador Digital Robusto, Problema de
Lurie, Estabilidade Absoluta, Controle Robusto, Controle H∞.
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