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Abstract — Surface Electromyography (sEMG) have been 

widely researched signal for prosthesis control. This process is 

based on sEMG processing steps as segmentation, feature 

extraction, and classification, which recognizes these biosignals in 

gestures to be performed for prosthesis.  Among these processes, 

segmentation is a fundamental step, however some variables are 

not explored, aiming to improve the classification performance. In 

this work, it was analyzed the influence of sEMG overlapping 

segmentation in pattern recognition for hand gestures used to 

control an upper-limp prosthesis. Data of six commonly used 

gestures were acquired by 8-channel commercial armband (Myo 

from Thalmic Labs) from 7 subjects in forearm. The evaluated 

segmentation parameters were window length, overlap fraction, 

and the full length of signal (truncation). Four time domain 

features were extracted: L-Scale, Maximum Fractal Length, Mean 

Value of Root Square, and Willison Amplitude. Linear 

Discriminant Analysis and K-Nearest Neighbor classifiers were 

used to recognized the gestures. Wilcoxon test was performed to 

evaluated significantly difference from results distribution 

(p<0.05). The best obtained results in classifier was achieved using 

the KNN classifier with the following specifications: window of 

0.45s, overlapping fraction of 25%, and truncation of 100%, with 

97.4% of accuracy. It was noted that increasing window length, 

the accuracy of classifiers also increase. The overlapping ratio 

presents some significant differences in the distribution, where 

smaller overlapping steps improves the accuracy. Regarding the 

truncation, the combination of start and last portion of the signal 

(not only the beginning) contain the useful information for pattern 

recognition. 

Index Terms — sEMG, Machine Learning, Segmentation, 

Feature Extraction, Robotic Hand. 

I. INTRODUCTION 

ROSTHESIS are devices used to substitute specific 

members (in upper or lower limbs) of the human body. 

They have become useful either for the amputee population or 

for those who has a congenital deficiency [1]. Prosthesis 

supplies aesthetic needs. However, they are not restrained only 

in this function. In fact, their functionality is being further 

developed and improved [2]. Design, system control, and 

biofeedback in the prosthesis’ state of art have been enhanced 

due to researches, incorporating physical characteristics and 

functionalities of an absent member. 

Currently, there are two types of prosthesis: active and 

passive. Regarding the passive prostheses, they do not possess 

articulations nor mechanisms. Its objective is to reestablish the 

external aspect of the body (aesthetic). On the other hand, active 

prosthesis are user-controlled by different actuators, e.g.: 

electrical, hydraulic or pneumatic. These models incorporate 

both the aesthetic need with the actuation. 

Concerning active models, the prosthesis based on 

myoelectric control have been widely researched and developed 

in both commercial and academic applications [3]. 

Electromyographic signals (EMG) are biopotentials generated 

by the activation of a motor unit that acts contracting a muscle. 

Thus, this signal are used to control robotic prosthesis due to 

their capacity to directly access muscle’s physiological 

information [4], [5]. The control of myoelectric prosthesis are 

achieved through processing of the sEMG signals. This process 

is based on the segmentation, extraction of features, and 

classification steps from sEMG. To perform that stages, it is 

necessary the use of machine learning techniques [4], [6], [7]. 

The state-of-the-art methods of sEMG classification are based 
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in seeking hand-crafted feature sets and segmentation 

parameters which lead to better accuracy rates and robustness 

[8], [9]. 

Among these stages, segmentation was the step that denotes 

some attention due to as composed by the identification of 

sEMG signal activation and its dividing in window segments 

[10]. Moreover the techniques of signal detection (as blind 

segmentation, double threshold onset method [10], and the use 

of inertial sensors[11], the parameters for window the signal are 

little explored. Parameters as window length (number of sEMG 

data points in a segment), overlapping rate (rate of overlap 

segments), and the total amount of signal (truncation) are 

essentials to guarantee data for the feature extraction and, 

therefore, for the classification. Its choice does not be arbitrary 

in data processing. Some guidelines are present in the literature, 

as the number of segments around 100 and 300 ms [12], [13] 

and fixed increment of overlap segments for classification 

around 25 and 100 ms [14], [15]. However, there is a need to 

verify the contribution of these parameters in the classification 

process. 

This works aims the evaluation of the effect of EMG time-

series signal segmentation parameters in the classification 

accuracy. Among these sEMG processing, segmentation is a 

fundamental step, however some variables aiming to improve 

the classification performance are fewer explored [11]. As the 

instances of the classifier are features extracted from a signal 

window, the length, the overlapping factor, and epoch of the 

signal used to train the classifier may affect its performance. 

This research has application in the development of myographic 

controlled robotic hands, whose focus is transradial amputees, 

in order to reestablish their functionalities. 

This work is organized as follows: Section II presents the 

used Materials and the Methodology applied in this work for 

data processing; Section III exhibits and Section IV discuss the 

obtained results with the change of the segmentation parameters 

and their influence in classification process; and Section V 

presents the main considerations about the paper. 

II. MATERIALS AND METHODS 

The data acquisition protocol used in this work was approved 

by Ethical Committee of Human Research of Federal 

University of Technology - Paraná (UTFPR) (CAEE 

89638918.0.0000.5547). Figure 1 presents the main flow of the 

data processing. The sEMG signals were acquired from an 

armband device and were recorded for the data processing. 

After the acquisition, the signals were divided in segments. 

Parameters as window length, overlapping rate, and part of the 

signal (truncation) were changed on the signal. Each window 

was sent to feature extraction step and mathematical operations 

were made in the segments aiming to extract the its useful 

information. These attributes were sent into the classifiers as 

inputs, where the gestures were recognized. Concerning a 

prosthetic control, the classifier's output is responsible to send 

the movement that the prosthesis should be made, acting the 

circuits that drive the motors of the prosthesis. 

The used acquisition device was the commercial armband 

Myo (Thalmic Labs). Myo has 8 sEMG channels (with 200 

samples/s and 8-bit resolution) and an inertial motion unity (3-

axis accelerometer, gyroscope, and magnetometer). This device 

were chosen due to be ease of placement on the subjects and its 

wireless communication with a computer by Bluetooth. Thus, 

it did not need a physical connection by cables with the 

processor unity (computer), allowing the performance of 

dynamic gestures with more naturalness. Data from 7 health 

subjects were acquired: 7 males ranging 21 to 33 years, 1.7 to 

1.87 m of height, and 71.4 to 130 kg of weight. Before each 

collection, hygiene and cleaning was performed on the device 

and on each forearm subject in the approximate region where 

the device would be positioned. In the protocol, the armband 

sensors were identified and positioned in posterior medial 

region, where the channel 3 of the armband was positioned on 

the  extensor  muscle, guarantee that the device have the same 

position for all the subjects. 

The protocol for data acquisition was based on repeated 

execution for each pre-defined movement. Six gestures were 

chosen to this analyze: abduction of all fingers (FA), fingers 

flexed together in fist (FF), thumb up (TU), pointing index (PI), 

tip pinch grasp (PG), and tripod grasp (TG). This movements 

were chosen due to are commonly used during routine actions 

for a hand amputee person. These gestures were presented in 

Figure 2 with a sample from eight channels acquired from Myo 

armband. The gestures were executed repeatedly to subjects 

perform them more naturally throughout the acquisition. 

Each movement was executed and sustained isometrically 

for 5 seconds and the subjects returned to relaxed state to 

guarantee that them have timely to perform and stabilize the 

required gesture, as well as relax completely after this 

execution. The gestures were performed with subjects seated in 

a straight chair with foots on the floor, legs apart, slight 

inclination of the trunk forward, keeping the spine aligned with 

the elbow resting on the thigh, and hand in a neutral position to 

prevent synergistic muscle activation. 

 
 

Fig. 1. Schematic of data processing flow. sEMG signals were acquired 
from forearm using 8-channel armband. The signals are segmented in 

overlapped windows. For each segment, features are extracted, changing 

the stochastic signal in useful information. The features are sent to the 
classifiers and from the recognized gesture, the motors in the prosthesis 

are actuated 
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A. Segmentation 

 

A slide window separates the signal periodically in fixed 

length segments with partial overlapping. In this work, the 

sEMG ∈ R𝑁, being composed by a data sequence represented 

by 𝒙 = [𝑥1, … , 𝑥𝑁], vector. This method, illustrated in the 

Figure 3, is a simple process that allows the operation for online 

EMG signal processing. The i-th segment is defined by: 

 

𝒔𝒊 = {𝑥(𝑖−1)𝑘 , … , 𝑥(𝑖−1)𝑘+𝑊}, 

 

where W is the dimension of segment and k is the window step. 

The overlap fraction 𝜙𝑜, which is the step size relative to the 

window size, can be calculated by 𝜙𝑜  =  
𝐾
𝑊⁄ . This way 𝜙𝑜  =

 1 is a disruptive window, 𝜙𝑜  =  0.5 is a half-step overlapping 

window and 𝜙𝑜  =  0.25  is a quarter-step overlapping window. 

The number of steps to surpass a whole window (𝑁𝑠) is equal 

to 𝑁𝑠 = 𝜙𝑜
−1. The processing time will be proportional to the 

window size and inversely proportional to the overlap fraction. 

Thus, the processing time is proportional to a factor of  
𝑊/𝜙𝑜 = 𝑊.𝑁𝑠 = 𝑊

2/𝑘. This way, one seeks for the smaller 

window size as possible as its effect to the processing time if 

squarely proportional. Besides that, the whole segment was 

truncated. Knowing that each gesture was acquired from 5 s, it 

was analyzed the maximum segment for 2.5 s and 5 s after the 

identified threshold. This variable was named  
𝐼𝑇  (signal truncation) and was changed to 50 and 100%, 2.5 and 

5 s, respectively. 

Several methods have been employed, such as segmentation 

based on the onset detection [10], peak detection [16], sample 

entropy [17], time-frequency characteristics [18], and signal 

spectral changes [19]. The onset segmentation is a well-known 

technique for sEMG segmentation, however it requires the 

determination of a threshold, which is also a concern [20], [21]. 

The analysis were performed off-line, in other words, the 

signals were processed after the acquisition from raw data. 

However, the presented analysis enable the same process in 

online approach.  

In this work, the following parameters were changing to 

evaluate the segmentation process: overlap rate (overlap 

fraction) of 0.25, 0.50, and 1, truncation of 50% and 100%, and 

window segment of 50 ms to 100 ms with step of 50 ms. 

 

B. Feature Extraction and Classification 

 

A robust sEMG classification depends on the correct feature 

selection, which may represent time and frequency 

characteristics [12]. Four features were chosen to extract the 

useful information from sEMG signal: L-Scale (LS), Maximum 

Fractal Length (MFL), Mean Value of the Square Root (MSR), 

and Willison amplitude (WAMP) [9].  

The Maximum Fractal Length (MFL), is a method for 

measuring low-level muscle activation [22], [23]. It is 

expressed as: 

 

𝑀𝐹𝐿 = 𝑙𝑜𝑔10

(

 √∑(𝑥𝑛+1 − 𝑥𝑛)
2

𝑁−1

𝑛=1
)

 , 

 

where, 𝑁 is the total number of data points in the signal 

𝑥 (signal length). 

 

The Willison Amplitude (WAMP) is defined by the number 

of times the amplitude difference between two consecutive 

points exceeds a given threshold. It is related to the muscular 

contraction level [24]. It can be calculated from: 

𝑊𝐴𝑀𝑃 = ∑𝑓(|𝑥𝑛 − 𝑥𝑛−1|)

𝑁−1

𝑛=1

, 

𝑓(𝑥) = {
1, if x ≥threshold
0, 𝑜𝑡ℎ𝑒𝑟𝑠𝑖𝑑𝑒

   

 

 

Fig. 2. Gestures acquired from subjects and a sample of ignal in each 
channel from Myo armband. The acquired gestures are: abduction of all 
fingers (FA), fingers flexed together in fist (FF), thumb up (TU), 
pointing index (PI), tip pinch grasp (PG), and tripod grasp (TG). 

 

 

 
 
Fig. 3.  Segmentation process applied in this work. After the detection 

the start of sEMG signal, the signal is separated in windows Sn 

with length W. 
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where the threshold was heuristically set as 10−2. 

LS is a feature based on L-moments which is less sensitive 

to outliers in the signal and biased estimation (if compared to 

other moments such as standard deviation). Commonly, the 

second moment (r=2) is used [9] and it can be defined as: 

𝐿𝑆 = 𝑟−1∑(−1)𝑘 (
𝑟 − 1

𝑘
)𝐸𝑋𝑟−𝑘:𝑟

𝑟−1

𝑘=0

, 

where, 𝑋𝑘:𝑛 is the 𝑘𝑡ℎ order statistic of a random sample of 

size $n$, and $E$ is the expected value [25]. 

The total amount activity of sEMG can be calculated from 

the Mean Value of the Square Root (MSR), which is obtained 

by the averaged sum of every sample within the analysis 

window [26]:  

 

𝑀𝑆𝑅 =
1

𝑁
∑√𝑥𝑛

𝑁

𝑛=1

. 

 

These features do not depend of frequency-domain and are 

related with amplitude and signal complexity. Besides that, 

setting one feature set is useful to investigate the combination 

of segmentation parameters, since this feature set has presented 

robustness and high accuracy in classification systems.  

Two classifiers were used to recognize the patters: Linear 

Discriminant Analysis (LDA) and K-Nearest Neighbors 

(KNN). These classifiers were chosen due to this simplicity and 

they are widely applied to signal sEMG classification. LDA is 

a classifier that uses the Fisher's discriminant to separate 

classes. LDA is a simple statistical approach and does not 

require any parameters adjustment. Also, it is computationally 

efficient for real-time operation and its classification 

performance for myographic signals [27]. KNN is a classifier 

based on distance between samples, and for this work, it was 

set for one-nearest neighbor. To classifiers analysis, k-fold 

cross validation was performed, with k being 10 folds.  

To analyze the performance of classifiers and the alterations 

in segmentation process, a statistical analysis was performed 

aiming to find significant differences in distributions. It was 

used the Wilcoxon (Rank-sum) test to evaluated the null 

hypothesis with confidence interval of 0.05. 

 

III. RESULTS  

 

The outcome results achieved using the KNN and LDA 

classifiers are shown in Figure 4 and Figure 5, respectively. The 

accuracy (hit-rate) of the classifiers are depicted in function of 

the window size for 𝐼𝑇  of 50% and 100% and  
𝜙𝑜 of 100%, 50% and 25% (or 1, 0.5, and 0.25) which are 

equivalent to disruptive, half-step overlapping and quarter-step 

overlapping segmentation. One may note that the accuracy 

increases with the segmentation window size. The overlapping 

factor improve the classification for KNN and for both 

approaches (KNN and LDA) using just the first portion (𝐼𝑇  = 

50%) affects the accuracy. 

The best result was achieved using KNN wih a window size 

of (W) of 450 ms, reaching 97.46±0.57%. However, KNN may 

present some issues for online operation, thus, as an alternative 

LDA can be used, where the best result was 78.39±1.69% with 

a window size of 750 ms. 
LDA presented significant differences when using window 

sizes over 600 ms. Truncating data to 50% did not affect 

significantly the accuracy for windows above 550 ms. For KNN 

no significant difference was observed for windows above 200 

ms considering overlapping of 25% (no truncation) at a 

significance level of 5% (p<0.05). Truncation lead to 

significant differences (exception to W = 1000 ms, 900 ms and 

800 ms). Thus, KNN has not only performed better, but also 

performed similarly when using small segmentation windows, 

which may improve online operation. Moreover, using the first 

half of each signal did affect the accuracy for smaller windows. 

This way, the whole portion of the signal, and not only the 

beginning, contain useful information for pattern recognition. 

 

The Figure 6 details the confusion matrix achieved using the 

best parameters (KNN with a window size of 450 ms and 

overlapping factor (𝜙𝑜) of 25\% and truncation (𝐼𝑇) of 100%). 

The FF movement is the most distinct class (99.31%) and the 

major confusion occurs when the target is PI and TU.  

 

Fig. 4. Accuracy (hit-rate) of the KNN classifier in function of the 

window size for IT of 50% and 100% and 𝜙𝑜 of 1, 0.5, and 0.25 

(disruptive, half-step overlapping, and quarter-step overlapping). 
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This behavior can be noted by the extraction of the evaluation 

metrics from the confusion matrix, presented in Table 1. All the 

classes presented precision and specificity higher than 98%. 

The differences between classes occurred in sensitivity 

parameter, which the class with highest precision also has the 

highest sensibility (the ability to identify true positives). The 

other classes presented values ranging 6%, and as this value was 

not accentuated for none other classes, it shows that the pattern 

recognition process did not privileged only one or two classes. 

On other words, as all the classes have similar values in these 

metrics, the segmentation parameters evaluated acting in all 

data set without privilege one class over than other. 

 

 

IV. DISCUSSION 

 

Concerning the segmentation parameters, truncation also 

may reduce the number of instances during the training. This 

way, avoiding transitory signals could reduce the number of 

possible erroneous instances, but also will reduce the total 

number of the instances for the training step. The hypothesis is 

that is more important to have a wider variability of the 

instances features, including the transitory (in this case, the 

second half of the movement event), than to have cherry-picked 

epochs which is previously known to represent better the target 

event. 

Following the aforementioned hypothesis, the overlapping 

has two functions. First as a data augmentation for the training, 

which could make the classifier more robust, as the number of 

instances increases proportional to a fraction of the overlapping 

factor. For example, if the step is half a window, the number of 

instances will double in relation to a disruptive segmentation. 

Regarding an on-line processing, the overlapping may help in 

post-processing techniques such as majority votes. This is 

because the overlapping creates redundancy within adjacent 

windows, and thus, those segments with anomalous signals will 

be averaged with adjacent overlapped windows. In other words, 

is like having a better resolution measure from the pattern 

recognition system. 

A major drawback of reducing the windows step is increasing 

the processing cost. In order to process the overlapped signal 

on-line, fractions of the signal will need to be held in a buffer 

for processing. Moreover, a larger number of feature extraction 

and classification will be performed as the time step becomes 

smaller. 

New hypothesis emerge from the results. Does the 

overlapping technique alone summed with post-processing 

techniques increase the classification accuracy, such as 

majority voting or Hidden Markov Models (HMM)? To test this 

possibility, the training process would have to be balanced in 

the number of instances, and the processing pipeline would 

have to consider the overlapping factor in the simulation of the 

on-line processing. In this case, the computational cost may 

represent a major factor in the analysis. Another issue is 

addressed to the contribution of the transitory events during the 

class. What is the accuracy divergence between a model that is 

trained using only the middle portion of the signal and a model 

that is trained to recognize transitory events? This question 

affects directly the interpretation of works that use one 

approach or another. Furthermore, is there a portion of the 

signal, which has more information about the movement than 

others? Finally, what is the better way to segment the signal to 

train a classifier? In this work, an overlapping approach was 

used, but even the segment window may affect the results. For 

example, picking random segments would lead to similar 

results? All those issues are each day more relevant considering 

the emerging wearable technologies and should be explored in 

future works. 

 

 

 

Fig. 5. Accuracy (hit-rate) of the LDA classifier in function of the 

window size for IT of 50% and 100% and 𝜙𝑜 of 1, 0.5, and 0.25 

(disruptive, half-step overlapping, and quarter-step overlapping). 

 

 

Fig. 6. Confusion matrix of the best result achieved using KNN with a 
window size of 450 ms and overlapping factor (φo) of 25% and 
truncation (IT) of 100%. 
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V. CONCLUSION 

 

This paper evaluated the segmentation parameters effect in 

the myoelectric hand gestures classification accuracy. The best 

results was achieved using the KNN classifier. Increasing the 

segmentation window length, also, it increases the classification 

accuracy; however using a window greater than 200 ms has not 

affected significantly the performance. This way, it is 

recommended to use smaller segmentation windows to improve 

online operation. It was also observed that smaller overlapping 

ratios (25%) and using the whole signal (no truncation) is 

preferable to train the classifier.  

Future works may test different feature sets and classifiers. 

Furthermore, the statistical analysis should be expanded, leave-

one-out validation and comparing with other segmentation 

methods such as the onset based segmentation. In addition, the 

optimal number of instances and signal range to improve the 

classification and response time still an open problem. The 

evaluation of post-processing techniques, such as majority 

votes and Hidden Markov Models, could be added to future 

developments. Another hypothesis, which will be evaluated, is 

that dividing the motion into individual finger movements in a 

multi-label bank of binary classifiers should improve time and 

accuracy performance. 
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Impacto de Parâmetros de Segmentação Temporal de sEMG 

no Reconhecimento de Gestos da Mão
 

 

 

Resumo — A eletromiografia de superfície (sEMG) tem sido 

um sinal amplamente pesquisado para o controle de próteses.  

Este processo é baseado nas etapas de processamento da sEMG 

como segmentação, extração de características e classificação, 

os quais reconhecem estes biossinais em gestos a serem 

realizados para próteses. Entre estes processos, a segmentação 

é uma etapa fundamental, porém algumas variáveis não são 

exploradas, com o objetivo de melhorar o desempenho da 

classificação. Neste trabalho, foi analisada a influência da 

sobreposição da segmentação sEMG no reconhecimento de 

padrões para gestos manuais usados para controlar uma prótese 

de limite superior. Os dados dos seis gestos heuristicamente 

usados foram adquiridos por uma braçadeira comercial de 8 

canais (Myo da Thalmic Labs) de 7 voluntários no antebraço. 

Os parâmetros de segmentação avaliados foram o comprimento 

da janela, a fração de sobreposição e o comprimento total do 

sinal (truncamento). Foram extraídas quatro características de 

domínio de tempo: Escala L, comprimento máximo da fração, 

valor médio do quadrado da raiz, e amplitude de Willison. Para 

reconhecer os gestos, foram usados os classificadores: Análise 

de Discriminantes Lineares (LDA) e K-ésimo Vizinho mais 

Próximo (KNN). O teste Wilcoxon foi realizado para avaliar a 

diferença significativa da distribuição dos resultados (p<0,05). 

Os melhores resultados obtidos no classificador foram obtidos 

utilizando o classificador KNN com as seguintes 

especificações: janela de 0,45s, fração sobreposta de 25%, e 

truncagem de 100%, com 97,4% de precisão. Foi observado que 

o aumento do comprimento da janela, a precisão dos 

classificadores também aumenta. A relação de sobreposição 

apresenta algumas diferenças significativas na distribuição, 

onde etapas menores de sobreposição melhoram a precisão. 

Com relação ao truncamento, a combinação de início e última 

porção do sinal (não apenas o início) contém as informações 

úteis para o reconhecimento do padrão. 

 

Palavras-chave— sEMG, Aprendizagem de Máquina, 

Segmentação, Extração de Características, Mão Robótica. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


